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Abstract

A 3 - Constrained total labeling of a graph G(V, E) is a bijective mapping g - V
UE > {1, 2 3,...,|V|+ |E|} with extra constraints | g(u) — g(v) | >3, | g(u) — g(uv) | > 3 and
| g(uv) — g(vw) |> 3 whenever u, v, w € Vand uv, vw € E. A graph G which admits such labeling
is called a 3-Constrained total graph. In this paper we determine that C,, % P>, Double triangular
snake graph, Chain sum graph of first kind, Helm graph, Sunlet graph, Wheel graph, Gear graph,
Ladder graph, Dutch windmill graph, Triple triangular snake graph, Zig-Zag Graph and Double
squared chain graph are 3 -Constrained total graphs.
Keywords: Graph Labeling, Total Labeling, 3-Constrained Total Graph. 2000 Mathematics
Subject Classification: 05C78

1 Introduction

Graph theory is the rapid expanding area of combinatorics where labeled graph
constitute a very convenient mathematical version for the wide collection of applications. A
labeling of a graph is a function from set of vertices or edges or both to set of integers, subject to
certain constraints. Kotzig and Rosa [1] introduced and proved that C, for all p > 3, K for all p
, and p has an edge magic total labeling. Enomoto et al. [2] defined and established that K-, if
p is odd then C, graph and caterpillars are super edge magic. Furthermore, it was shown that g <
2p — 3, if a graph has p vertices with q edges represents super edge magic. Also proved that if a
graph with p vertices and ¢ edges is super edge magic then ¢ <2p — 3.

MacDougall et al. in 1999 [3] and established that P,, C, for (p > 2), K, ; for (I
> ]) and K, (p is odd) have vertex magic total labelings and also proved that if p > ¢ + I, then
K does not satisfy vertex magic total labeling. Exoo et al. [4] considered a total magic labeling
of a graph G(V, E) which is both an edge magic and a vertex magic total labeling.

Baca et al. [5] established the concept of (@, d) -vertex antimagic total labeling for
a graph G (V,E). They proved that paths, prisms & generalized Petersen graphs have (a, d)-vertex
antimagic total labelings. An (a, d) -edge antimagic total labeling for a graph G(V, E) was
described by Simanjuntak et al. in [6]. In order to label paths and cycles for various values of a
and d, they established” (a, d) -edge antimagic total labeling.”

Recently Shreedhara K. et al. [7] established Smarandechely k-constrained total
labeling. Motivated by above labeling, we consider 3-constrained total labeling of some
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family of graph G and establish the same for C, x P>, Helm graph, Double triangular snake graph,
Sun graph, Chain sum graph of first kind, Wheel graph, Gear graph, Ladder graph, Dutch
windmill graph, Triple triangular snake graph Zig-Zag Graph and Double squared chain graph.

2 Definitions of Some Classic Graphs:
Definition 2.1. The triangular snake 7}, is attained by substituting a cycle C3 at each edge of a
path Py,.
Definition 2.2. The alternate triangular snake A4(7}) is attained from a path P, by substituting each
alternate edge of P, by a cycle Cs.
Definition 2.3. Two alternate triangular snakes with a shared path make up the alternate double
triangular snake DA (7).
Definition 2.4. Two alternate triangular snakes with a shared path make up the alternate double
triangular snake DA (7).
Definition 2.5. The quadrilateral snake (), is collected from a path P, by substituting each edge
of P, by a cycle Cy.
Definition 2.6. The double quadrilateral snake is denoted by DQ), is created by two quadrilateral
snakes that having a shared path.

A 3 - Constrained total labeling of a graph G (V, E) is a bijective mapping g - VUE
— {1, 2,...,|V]| +|E|} with the extra requirements that

| g(w) —gv) =3
lgw) — guv) | 23
| gwv) —g(vw) [ 23

whenever u, v,w € V and uv, vw € E. Graph G is referred to as a
3 -Constrained total graph if such labeling is allowed.

3 Main Outcomes of Cycle Related Graphs

Theorem 3.1. Forp > 5, C, x P2 is a 3 -constrained total graph.

Proof. Cp x Pyis a graph with V' = {u;, v; : 1 <j <p}and E = {vyv+1, ujuj+;:
1<j<p—1}VU{ws, ugu;} U {uv; : 1 <j<p} where |V |=2pand|E|=3p.
Indicate the total labeling g : V UE — {1, 2, ..., 5p} on a graph C, X P> as

g(u,)=5j-1 ,
. I<j<p
g(v;)=3j-4
g(V-+V-+ ):5]_3
e 1<j<(p-2)

g(uj+1uj+2):5j_2
g(uj+4vj+4) = 5]f0]"1 <j<p-—4
g(uy,)=5p+5j—20 for]< j<4

gvpvy) =5p — 8, g(viva) = 5p — 3, g(upur) = S5p — 7 g(uuz) = 5p — 2.
Now it is easy to verify that C, x P satisfy 3 — Constrained total labeling.
Theorem 3.2. Helm H), for p > 3 is a 3 - constrained total Graph.
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Proof. Helm graph consists of V' = {vo, v;, u;: I <j <p}and E = {vovj, ujv;: 1<
JE<ppUfvvi+i: 1 <j<p—1}U{v;v,} with |V | =2p+1 and |E| = 3p . Consider a total labeling g - V'
UE— {12, ...,5p+ 1} defined on Hp by
g(vovj))=3j—2for1 <j<p

gV, Vj+5}: 3J

g(vj+5 uj+5):3p+j IS]Sp_5

g(uj+5)

glujvj)=4p+j->5

g(u;) =5p+j-5

gvi+) =3p+3j—12for1 <j<4
gWwy)=3n—4,g(v)=3n—-1,
gy =5n+1,g(vpv)=3p—12
Here the function g serves as a 3 - Constrained total labeling for H,.
Theorem 3.3. Sunlet graph is a 3 -constrained total Graph.
Proof- Let G (V, E) be n-sunlet graph hold V= {vj, u; :1 <j <p} and E=
vl <j<p— 1}U{vu; : 1 <j<plU{vvi} with|V | = 2p and |E|=2p
edges. Consider a total labeling g : VU E — {1, 2, ..., 4p} defined on vertices by

g(v;)=3p+3j-13
glu;)=4p+j—4
g(vj+4) =3j—-1
g(uj+4) =3n+j

1<j<5

1<j<4

I1<j<p—4

Now defined on edges by

gvvi+) =3j—2forl1 <j<p-—1

gwit3u+3)=3jfor 1 <j<p-—3

guv) =3p+3j—9forl1<j<3

gvpvi) =3p -2

Here the Sunlet graph admits 3 - Constrained total labeling.
Theorem 3.4. Wheel W), , for n > 6 is a 3 -constrained total graph.
Proof. The wheel graph is formed of V={v;: 0<j<pland E = {vov; : 1 <j <
POV 1 <j<p— 1} U{vwv)} with [E|=p + | and |E| = 2p . Describe a total labeling g : V'
UE— {1, 2,...,3p+ 1} onvertices of W, by

g(vy) =3p+1
=3p—4
g(VI) p IS j<p-2
g(v,) =3p-9
g(vj+2) :3j_]
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Define on edges by
gvovy) =3j—2for 1 <j<p
gvj+4vj+s) = 3jfor 1 <j<p—-35

gvi+1vi+2)=3p + 3j—9for 1 <j <3

gvwvi) =3p—12, g (vivz) =3p—1
Here W), admit 3 — Constrained total labelng.
Theorem 3.5. Gear graph is a 3 -constrained total labeled graph.
Proof. The Gear graph has V' ={v;: [ <j<2p + 1} and =
{vivaj, vajvat1, v+ va+2 o1 <j <p}where |V | = 2p + I and |E| = 3p. Consider a total labeling g

VUE— {1 2, ..., 5p+ 1} into two cases.
Case 1: If p =0 (mod 2) then,
v =5n+1
g(v,) . I<j<p
gvy) =]
g(vyy) :P"‘ZJ:_] ]SjS£
g(v4j+1) =p+2j 2
We label the edges
. 7p+4)
&(Vy2Vyy) =37+
. 7p+6
g(v4j V4j+1) =3j+ >]Sj£§—]
g(V4j+3 V4j+4):3j+2p
g(V4j+1 V4j+2) :3j+2p_])

gvivy) =2p+ 3j—2for 1 <j<p

7p—2 7 /p+4
g(V2V2p+1):—p ’g(V3V4):_p’g(V2p—2 va—l): d ,
2 2 2
7p+6
g(Vva2p+]) = 5

Now it is easy to verify that G, satisfy 3 -Constrained total labeling.
Case 2: If p=1 (mod 2), then
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v =5n+1
g(v,) . 1<i<p
g(VZj) =]
. . _p+l1
g(V4j_1):p+2]—1f0r]S]£ >
_ . . _P—
g(V4j+1)—p+2j fOF]S]ST
We label the edges
gvivy) =2p +3j— 2 for 1 <j<p
g(v4j+1 V4j+1 :3J+2p_1)
CTp+l| . p-1
g(V4j_2V4j_1)=3]+ >]S]S7
. /p+3
g(V4j V4j+1):3] +
g(v4j+3v4j+4):3j+2pf0F]SjSp2_
7p+3 +1 7p—3

g(vsv 4)— & (VoY )=

g(v2pv2p+1)_ 2

This labeling estabhsh a 3 -Constrained total labeling for G,
[lustrative Example for Gs graph
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Figure 1: 3 constrained total labeling of Gear graph G,

Theorem 3.6. Ladder graph L, is a 3 -constrained total labeled graph.

Proof. The Ladder graph comprises of set V={v; : I <j <2p}andset E= {vy-vy: 1 <j<p} U
{Vaj-1vaj+1, vava+2 - 1 <j<p — 1} with |V | =2p and |E| = 3p — 2 . Hence we consider a total
labelingg : VUE — {1,2, ..., 5p — 2} on Lp in to two events.

Case 1: If p = 2k then,

g(v4j—3) =p+2j-1
g(v4j—2) =p+2j+3

g(v4j—1) =2j+2p

8 (V4 j) =2j+p
We label the edges
g(va-1vy) =jfor 1 <j<p

8(Vy vy )=3p+2j—1

SN YEES-
g(V4j—2V4j) =4p+2j-2 2
V,. V. )=4p+2j—1
8(Vij Vi) =4D +2] 1<j<P_
g(v4_jv4j+2) =3p+2 2
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This labeling serves as a 3 -constrained total labeling for L.
Case 2: If p = 2k + 1 then,
g(Vys)=p+2j—1
4j-3 . i< ] < P +1/
g(V4j—2):2p+2]_] 2

g(vy)=2p+2j ]<j£(p—])

g(v,)=2j+p 2

Label the edges
g(v4j—3v4j—1) =2j+3p—1

8V Vi) =2j+4p-1

g(v4j—2v4j) =2j+4p-2

g(v4jv4j+2) =2j+3p

g(vaj-1vy) =jfor 1 <j<p

This proves that L, is a 3 -constrained total labeled graph.
1

5 9
v, %
13 16
2
10
v, AL
17 14
3
7 11
Vs \3
15 18
12 e vB
vy ()

Figure 2: 3 constrained total labeling of Ladder graph L,

Theorem 3.7. Dutch wind mill graph Df for p >4 is a 3 -constrained total labeled graph

Proof. Dutch wind mill graph has V' = {v;: I <j<3p + 1} and E = {vivsj-1, vivsj+1, v3i-1V3}, V3V3i+1
1 <j<p} where |V |=3p+1 and |[E|= 4p.
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Let us consider a total labeling g : ¥ UE —— {1, 2, . .. 7p+1} defined on vertices by
gv,)  =7p+l
g(Vsj—1) =6p+6j—15
g(vs;.,) =6p+6j—12
g(vy;) =7p+j-2

j=12

g(V3j+5) =6j-3
g8(Vijr)  =0] I<j<p=2
g(v3j+6) =6p+J

Defined on edges by
g(vyvy, ) =6j-=5
g(vyvs;) =6j—-2¢p1<j<n
g8(Vis)  =6n+j

8(Vsv3,3) =6j—4
8(Vs3Vsy) =0j—1
gvj+vi+2) =6p + 3 — 7forj=1,2

I<j<p-1

This labeling serves as a 3 -constrained total labeling for Df .

4 Outcomes of Snake Related Graphs
Theorem 4.1. Double triangular snake graph DT, for p > 2 is a 3 —constrained total Graph.

Proof. Double triangular snake graphis madeup of V'={w;: I <j<p} U {u, vi:1<j<p—1}
and E = fwwj+1,wiu; Wi+, wivi,wi+1v; 0 1 <j<p — 1}

with |V | =3p — 2and |E| = 5p — 5. Consider a total labeling g : VUE — {1,2,...,8p— 7} on
DT, in to three events.

Case 1. If p =0 (mod 3) then,

g(”j) =]

I<j<p-1I
g(v;,) =j-1+p /=P

9868



MACHINE INTELLIGENCE RESEARCH ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

g(w,) =6p+6j-11
g(w,,) :6p+6j—H)]£js(§)
&(ws,,) =6p+6j=9

We label the edges

g(ww,.,) =6p+6j-38
1<j<|Z
g(wg+ng+j+1) :6p+6j_7 3

gluw;) =j+2p-2
g(ujoH) =j+3p-3

g(viw,) =j+4p—4

g(Vjo+1) :j+5p_5J

gﬁ%%m%ﬁﬂ):6p+6j—6ﬁW]Sj£(§_C

This labeling serves as a 3 -constrained total labeling for D(7)) if
p=3k.

Case 2. If p=3k + 1, then
g(uj) =]

1<j<p-1
g(v,) :p+,~_1} /=

gh@):6p+6j—lkﬁr]£j£(p;2j

g(w,,;z”) =6p+6j—7 ' (P—lj
1<) <
g(wm,ﬂ) =6p+6j—6 3

We label the edges
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glu;w,) =2p-2+7)
gluw,,) =3p-3+j
g(v,w;) =4p—4+]
gviw,,) =35p-5+]

g(wj‘wj_;.] :6p+6j—8

g(wp;uwp;] =6p+6j—-10;1<j

j+1
3 3+]+ 3

g(Wﬂ+jW2n_2+j+1 =6p+6j—9
o

3

which serves as a 3 -constrained total labeling for D(7,,) if p = 1(mod 3)
Case 3. If p = 2( mod 3) then we label the vertices

g(u;)  =j
: o tI<j<(p-1)
g(v,) =p+j-1
g(Wj) =6p+6j—11
j<j<Pt!
g(wz,,,H) =6p+6j—-9 3
. ._p—2
g[WpH ] =6p+6j—7 for 1< j< 3
gluw,) =2p—2+]j
guw,,)  =3p=3+j
o (1<j<p-1
g(Vjo) =4dp—4+]
g(VjoJrl) :5[9—54‘]'/
The edges
g(ijj+1) 6p+6]—8 B
_ /< P 2
8(Wapr Wopr ) 6p+6j-6('=/="73
3 3
gtwpz W, J=6p+6j—10f0r]£jsp+]
R 3

This labeling serves as a 3 -constrained total labeling for D(7)) if
p =2 (mod 3).
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Theorem 4.2. The chain sum graph of first kind is a 3 -constrained total Graph for n > 2
Proof. The chain sum graph of first kind consists of vertex set

V={:1<j<p}VU{u,wj:1<j<p— 1}andedge set
E = {upy;, upvier,wpv, wivis, wwy o 1 <j<p— 1} with |V'| =3p — 2 and
|E| = 5p — 5. Consider a labeling g: VU E — {1, 2,... ,8p — 7} defined on vertices by.

Sf(u;) J
f(w;) p+j—1
f(v,)=6p+j—6 fori<j<p

I1<j<p-1

Defined on edges by
f(ujvj) :2p+j_2“
fluyv,,) =3p+j=3
 tI<js<(p-1)
f(wv, =4p+j—4
f(ijj+1) =Sp+j-3

Now it is simple to prove that chain sum graph of first kind satisfy 3 — Constrained
total labeling.

Theorem 4.3. Triple triangular snake graph T(Tp) is a 3 -constrained total labeled graph.

u, u, u

Figure 3: 3 constrained total labeling of Triple triangular snake graph 7(7,)

Proof. Let graph G = T(T,) be made up of vertex set V' ={v;: [ <j<p+ 1} U {w, x, u;: [ <j <
pt and an edge set E = {viu;, vj+1u;, viw;, vi+iw;, Vixj, vi+ixj, Vivi+r - 1 <j < p} where, |V | = 4p+1
and |E| = 7p . Let us define a total labeling g - VUE — {1, 2, ... 1lp + 1} on T(T},) into two
events.

Case 1: If p = 2k then,
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g(ij) = 3j_1
g(x2j—]) =3j-2

P
g(uy ) = 3]_37;9_ >I£J£5
g(w;)=j+5p+1
g(v,;) = j+97p+]

p+2

g(VZj—I):j+3p Jor 1< j<
We also define
g(vx;) =j+7p+1 ]

(V.x,)= '+7—p+1 1<j<
g JHITVj ] 2 ] p

g(vjwj) =j+9p+1

g(v,,w;) =j+10p+1
g(viu;,) =j+6p+1
g(v,u;) =j+8p+1
g(Vj”j+1) =3

Here the total labeling shows that 7(7}) is a 3 -constrained total labeled graph.
Case 2: If p = [ (mod 2) we define

g(xzj) =3j—-1

> ]:S_j S;}?
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g(x2j—]) =3j-2

. 3p-5
g(uzj—l) = 3]_pT ny
o0l 1£j£p2
_|._
g(v,,) =J+ p2

g(sz—l) =Jj+3p
glw,)=j+5p+1fori<j<p
We also define

g(vx; =7p+j+1]

7 ) :
g(v;,x;) :7p+]+] I1<j<p

g(vjwj) :9p+j+1)

g(vj+le) :]0p+j+]\
g(vu, =6p+j+1
g(vjij) :3]
g(vj+1uj) =8p+j+1

This is a 3 -constrained total labeled graph.

Theorem 4.4. Triple quadrilateral snake graph 7(Q,) is a 3 -constrained total labeled graph.
Proof. Triple quadrilateral snake graph has vertex set

V="14 w, vj w;, %, yj, zj, vj+1 : 1 <j <p} and edge set £ = {VivieL, VW), Wit §Vj+1, Vizj, ZjX),
XVi+1, Vi, wyj, yivi+1 - 1 <j<p}with |V|=7p+ 1 and |E| = 10p. Now we consider the total
labelingg: VUE— {1, 2,...17p + I} into two events.

Case 1: If p = 0 (mod 2), then

Figure 4: 3 constrained total labeling of Triple quadrilateral snake graph 7(Q,)
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We also define,

g(sz) =3j-1
g(ZZj—I) =3j-2

.9
g(sz) = J _p+1
2
.3
glu,;) = 3J+7p—
3p

g(qu—I):3j+7_]

Vo

J
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g(VZj—[):j+3pf07’]SjS£+]

2
g(x;) =j+14p+1)
g(w,) =j+1ip+1
_ 1< j<p
g(t,) =j+12p+1
g(x;) =j+13p+1
g(v;z;) =j+7p+1)

g(zjxj) =j+16p+1

7
g(x;v,,) =J+7p+1

g(viw;) =j+9p+1 |

9874



MACHINE INTELLIGENCE RESEARCH

g(wt,) = j+5p+1 )
g(tu;,) = j+10p+1

g(vjij) - 3]
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1<j<
g(viu;,) = j+6p+1 /=P
gluy,)=j+15p+1
g(yyv;) = j+8p+1
Case 2: If p = 1 (mod 2) we define
g(z,)=3j-1 o
o 3p-1pl=Js
g(uy)=3j+ p2 2
g(ZZj—]):3j_2
. 9p+1
g(vy;)=J+
2
g(VZj—]):j+3p
. 3p-5 . _p+l1
g(vy)=3j+ p2 forlS]SpT

g(x,)=j+14p+1
g(w;)=j+1Ip+1
g(t,)=j+12p+1fori<j<p

We also define
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gvz;)=j+7p+1
g(zx,)=j+16p+1
7p+1

2
givw,)=j+9p+1
gwt;)=j+5p+1
g(tyv,,)=j+10p+1
g(vjvj+]):3j
g(uy,)=j+15p+1
g(yyv,)=j+8p+1 fori<i<np.

g(xjujH) :j +

Theorem 4.5. Zig-Zag graph Z(T),) is a 3 -constrained total labeled graph.

Figure 5: 3 constrained total labeling of Zig-Zag graph Z(T,)

Proof. Zig-Zag graph consists of V' = {x; : [ <j < pT_I}U i:1<j< pT”}U i d<j<p! E
p—1 p+1

2
— 1} with |V | = 2p and |E| = 4p — 3. Now let us define a total labeling g : VUE — {1, 2, ... 6p
— 3} on vertices of Z(T}) as

= {XjVaj+1, V2j-1Xj , XjV2j, YjVaj, Yi+1vy - 1 <j <

FUva-1y i 1<) <

JU v 1 <j<p

V.. =j+2 _
g(v,;) J 1< <P I
g(x;) =] 2
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g(szq) =j+—
3 X 1 I=j= p;—]
g(y;) =Jj+ l}
Edges are labeled as
7p—3 p+1

g(vyy;)=Jj+ Jor I<j<

2

N

g(xvy,) = j+3p—1
g(VZj—]xj) = Jj+2p
S5p-1
2
g(VZj—1V2j):j+5p_2 IS j<p
g(yyv,)=j+4p—1

g(ijZj) = Jj+

. 9p-3
g(yj+1v2j) = Jt p2

. 1lp-)5
gV, Vyiy) = J"‘pT

Theorem 4.6. Double squared chain graph DSC for p <3 is a 3 -constrained total labeled graph.

Proof Let V={v;: 1 <j<p}U{u, wj, xj, yj: 1 <j<p—1}and E = {viuj, ujvj+1, viwj, wivj+1,
ViXj, Xjvi+1, Viyj, Vivi+1 . 1 <j <p — 1} for Double squared chain graph respectively where |V | = 5p
— 4 and |E| = 8p — 8. Define a total labeling g : V UE — {1, 2,...., 13p — 12} on vertices of DSC
as

gv) =jtdp—4forl<j<p
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glvu,) = j+p-1I

gluy,,) = j+3p-3
g(viw;) = j+5p—4
g(wyv, )=j+6p=5

I1<j<p-1
g(vjxj)=j+7p—6 J=P
g(xyv,,)=j+8p—-7
g(v,y;) = j+10p-9
gy, ) = Jj+1lp—-10

g(u;) =J

g(w;) =j+2p-2 ,
1<j<p-1

g(x;) =j+9p-8

g(y;) =j+12p-11

Conclusion
In this paper, we dealt with 3 constrained total labeling and defined some classic
graphs. Then we obtained 3 constrained total labeling for cycle and snake related graphs.
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