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Abstract 
  A 3 - Constrained total labeling of a graph G(V, E) is a bijective mapping g : V 

UE  {1, 2, 3, . . . , |V | + |E|} with extra constraints | g(u) − g(v) | ≥ 3 , | g(u) − g(uv) | ≥ 3 and 
| g(uv) − g(vw) |≥ 3 whenever u, v, w ∈ V and uv, vw ∈ E. A graph G which admits such labeling 
is called a 3-Constrained total graph. In this paper we determine that Cn × P2, Double triangular 
snake graph, Chain sum graph of first kind, Helm graph, Sunlet graph, Wheel graph, Gear graph, 
Ladder graph, Dutch windmill graph, Triple triangular snake graph, Zig-Zag Graph and Double 
squared chain graph are 3 -Constrained total graphs. 
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1 Introduction 
  Graph theory is the rapid expanding area of combinatorics where labeled graph 
constitute a very convenient mathematical version for the wide collection of applications. A 
labeling of a graph is a function from set of vertices or edges or both to set of integers, subject to 
certain constraints. Kotzig and Rosa [1] introduced and proved that Cp for all p > 3, Kl,m for all p 
, and p has an edge magic total labeling. Enomoto et al. [2] defined and established that K1,p−1, if 
p is odd then Cp graph and caterpillars are super edge magic. Furthermore, it was shown that q ≤ 
2p − 3, if a graph has p vertices with q edges represents super edge magic. Also proved that if a 
graph with p vertices and q edges is super edge magic then q ≤ 2p − 3. 
  MacDougall et al. in 1999 [3] and established that Pn, Cp for    (p > 2), Kl, l for (l 
> 1) and Kp (p is odd) have vertex magic total labelings and also proved that if p > q + 1, then 
Kl,m does not satisfy vertex magic total labeling. Exoo et al. [4] considered a total magic labeling 
of a graph G(V, E) which is both an edge magic and a vertex magic total labeling. 
  Baca et al. [5] established the concept of (a, d) -vertex antimagic total labeling for 
a graph G (V,E). They proved that paths, prisms & generalized Petersen graphs have (a, d)-vertex 
antimagic total labelings. An (a, d) -edge antimagic total labeling for a graph G(V, E) was 
described by Simanjuntak et al. in [6]. In order to label paths and cycles for various values of a 
and d, they established” (a, d) -edge antimagic total labeling.” 
  Recently Shreedhara K. et al. [7] established Smarandechely k-constrained total 
labeling. Motivated by above labeling, we consider           3-constrained total labeling of some 
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family of graph G and establish the same for Cp × P2, Helm graph, Double triangular snake graph, 
Sun graph, Chain sum graph of first kind, Wheel graph, Gear graph, Ladder graph, Dutch 
windmill graph, Triple triangular snake graph Zig-Zag Graph and Double squared chain graph.   
 
2  Definitions of Some Classic Graphs: 
Definition 2.1. The triangular snake Tp is attained by substituting a cycle C3 at each edge of a 
path Pp. 
Definition 2.2. The alternate triangular snake A(Tp) is attained from a path Pp by substituting each 
alternate edge of Pp by a cycle C3. 
Definition 2.3. Two alternate triangular snakes with a shared path make up the alternate double 
triangular snake DA (Tp). 
Definition 2.4. Two alternate triangular snakes with a shared path make up the alternate double 
triangular snake DA (Tp). 
Definition 2.5. The quadrilateral snake Qp is collected from a path Pp by substituting each edge 
of Pp by a cycle C4. 
Definition 2.6. The double quadrilateral snake is denoted by DQp is created by two quadrilateral 
snakes that having a shared path. 
  A 3 - Constrained total labeling of a graph G (V, E) is a bijective mapping g : VUE 
→ {1, 2, . . . , |V | + |E|} with the extra requirements that 

| g(u) − g(v) | ≥ 3 
| g(u) − g(uv) | ≥ 3 

| g(uv) − g(vw) | ≥ 3 
whenever u, v,w ∈ V and uv, vw ∈ E. Graph G is referred to as a  
3 -Constrained total graph if such labeling is allowed. 
 
3  Main Outcomes of Cycle Related Graphs 
Theorem 3.1. For p ≥ 5 , Cp × P2 is a 3 -constrained total graph. 
Proof. CP × P2 is a graph with V = {uj , vj : 1 ≤ j ≤ p} and E = {vjvj+1, ujuj+1: 
1 ≤ j ≤ p − 1} ∪ {vnv1, unu1} ∪ {ujvj : 1 ≤ j ≤ p} where |V | = 2p and |E| = 3p . 
Indicate the total labeling g : V UE → {1, 2, . . . , 5p} on a graph Cp × P2 as 

pj1
4j5)v(g

1j5)u(g

j

j











 

)2p(j1
2j5)uu(g

3j5)vv(g

2j1j

2j1j
















 

4pj1jfor5)vu(g 4j4j   

4j1for20j5p5)vu(g jj   

g(vpv1) = 5p − 8 , g(v1v2) = 5p − 3 , g(upu1) = 5p − 7 g(u1u2) = 5p − 2. 

Now it is easy to verify that Cp  P2 satisfy 3 – Constrained total labeling.   
Theorem 3.2. Helm Hp, for p ≥ 3 is a 3 - constrained total Graph. 
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Proof. Helm graph consists of V = {v0, vj, uj : 1 ≤ j ≤ p} and E = {v0vj, ujvj:1≤ 
j≤ p}∪{vjvj+1: 1 ≤ j ≤ p−1}∪{v1vp} with |V | = 2p+1 and |E| = 3p . Consider a total labeling g : V 
∪ E → {1, 2, . . . , 5p + 1} defined on Hp by 

g(v0 vj) = 3j − 2 for 1 ≤ j ≤ p 


5pj1

)u(g

jp3)uv(g

j3vv(g

5j

5j5j

5j4j




















 

5j1
5jp5)u(g

5jp4)ujvj(g

j









 

g (vjvj+1) = 3p + 3j − 12 for 1 ≤ j ≤ 4 
g (v1) = 3n − 4 , g(v2) = 3n − 1 , 
g (v0) = 5n + 1 , g(vpv1) = 3p − 12 
Here the function g serves as a 3 - Constrained total labeling for Hp. 
Theorem 3.3. Sunlet graph is a 3 -constrained total Graph. 
Proof. Let G (V, E) be n-sunlet graph hold V= {vj, uj :1 ≤ j ≤ p} and E= 
{vjvj+1:1 ≤ j ≤ p − 1}∪{vjuj : 1 ≤ j ≤ p}∪{vpv1} with|V | = 2p and |E|=2p 
edges. Consider a total labeling g : V ∪ E → {1, 2, . . . , 4p} defined on vertices by 

4j1
4jp4)u(g

13j3p3)v(g

j

j











 

4pj1
jn3)u(g

1j3)v(g

4j

4j
















 

Now defined on edges by 
g (vjvj+1) = 3j − 2 for 1 ≤ j ≤ p − 1 
g (vj+3uj + 3) = 3j for 1 ≤ j ≤ p − 3 
g(ujvj) = 3p + 3j − 9 for 1 ≤ j ≤ 3 

g(vpv1) = 3p – 2  
Here the Sunlet graph admits 3 - Constrained total labeling. 
Theorem 3.4. Wheel Wp , for n ≥ 6 is a 3 -constrained total graph. 
Proof. The wheel graph is formed of V={vj : 0 ≤ j ≤ p} and E = {v0vj : 1 ≤ j ≤ 
p}∪{vjvj+1 : 1 ≤ j ≤ p − 1} ∪ {vpv1} with |E| = p + 1 and |E| = 2p . Describe a total labeling g : V 
∪ E → {1, 2, . . . , 3p + 1} on vertices of Wp by 

2pj1

1j3)v(g

9p3)v(g

4p3)v(g

1p3)v(g

2j

2

1

0
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Define on edges by 

g(v0vj) = 3j – 2 for 1  j  p 

g(vj+4vj+5) = 3j f or 1  j  p – 5 

g(vj+1 vj+2)= 3p + 3j – 9 for 1  j  3  
g(vnv1) = 3p – 12, g (v1v2) = 3p – 1  

Here Wp admit 3 – Constrained total labelng.   
Theorem 3.5. Gear graph is a 3 -constrained total labeled graph. 
Proof. The Gear graph has V = {vj : 1 ≤ j ≤ 2p + 1} and = 
{v1v2j, v2jv2j+1, v2j+1v2j+2 :1 ≤ j ≤ p} where |V | = 2p + 1 and |E| = 3p. Consider a total labeling g 
: V ∪ E → {1, 2, . . . , 5p + 1} into two cases. 
Case 1: If p ≡ 0 (mod 2) then, 

pj1
j)v(g

1n5)v(g

j2

1 







 

 

2

p
j1

j2p)v(g

1j2p)v(g

1j4

1j4
















 

 
 
We label the edges 

1
2

p
j1

1p2j3)vv(g

p2j3)vv(g
2

6p7
j3)vv(g

2

4p7
j3)vv(g

2j41j4

4j43j4

1j4j4

1j42j4



































 

g(v1v2j) = 2p + 3j − 2 for 1 ≤ j ≤ p 
 

,
2

4p7
)vv(g,

2

p7
)vv(g,

2

2p7
)vv(g 1p22p2431p22





   

2

6p7
)vv(g 1p2p2


  

 
Now it is easy to verify that Gp satisfy 3 -Constrained total labeling. 
Case 2: If p ≡ 1 (mod 2), then 
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pj1
j)v(g

1n5)v(g

j2

1 







 

 

2

1p
j1for1j2p)v(g 1j4


  

 

2

1p
j1forj2p)v(g 1j4


  

We label the edges 
g(v1v2j) = 2p + 3j − 2 for 1 ≤ j ≤ p 

2

1p
j1

2

3p7
j3)vv(g

2

1p7
j3)vv(g

)1p2j3vv(g

1j4j4

1j42j4

1j41j4































 

 

2

3p
j1forp2j3)vv(g 4j43j4


  

 

.
2

3p7
)vv(g,

2

1p7
)vv(g,

2

3p7
)vv(g 1p22431p2p2








   

This labeling establish a 3 -Constrained total labeling for Gp
 

Illustrative Example for G8 graph 
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Figure 1: 3 constrained total labeling of Gear graph Gn 

 
Theorem 3.6. Ladder graph Lp is a 3 -constrained total labeled graph. 
Proof. The Ladder graph comprises of set V={vj : 1 ≤ j ≤ 2p} and set E = {v2j−1v2j : 1 ≤ j ≤ p} ∪ 
{v2j−1v2j+1, v2jv2j+2 : 1 ≤ j ≤ p − 1} with |V | = 2p and |E| = 3p − 2 . Hence we consider a total 
labeling g : V ∪ E → {1,2, . . . , 5p − 2} on Lp in to two events. 
Case 1: If p = 2k then, 

2

p
j1

pj2)v(g

p2j2)v(g

3j2p)v(g

1j2p)v(g

j4

1j4

2j4

3j4


































 

We label the edges 
g(v2j−1v2j) = j for 1 ≤ j ≤ p 

2

p
j1

2j2p4)vv(g

1j2p3)vv(g

j42j4

1j43j4
















 

 

1
2

p
j1

2p3)vv(g

1j2p4)vv(g

2j4j4

1j41j4
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This labeling serves as a 3 -constrained total labeling for Lp. 
Case 2: If p = 2k + 1 then, 

2

1p
j1

1j2p2)v(g

1j2p)v(g

2j4

3j4 
















 

 

2

)1p(
j1

pj2)v(g

j2p2)v(g

j4

1j4 












 

 
Label the edges 

2

1p
j1

p3j2)vv(g

2p4j2)vv(g

1p4j2)vv(g

1p3j2)vv(g

2j4j4

j42j4

1j41j4

1j43j4





































 

 
g(v2j−1v2j) = j for 1 ≤ j ≤ p 

 
This proves that Lp is a 3 -constrained total labeled graph. 

 
Figure 2: 3 constrained total labeling of Ladder graph Ln 

Theorem 3.7. Dutch wind mill graph 
p

4D  for p ≥ 4 is a 3 -constrained total labeled graph 

 
Proof. Dutch wind mill graph has V = {vj : 1 ≤ j ≤ 3p + 1} and E = {v1v3j−1, v1v3j+1, v3j−1v3j, v3jv3j+1 
:1 ≤ j ≤ p} where |V |=3p+1 and |E|= 4p. 
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Let us consider a total labeling g : V UE −→ {1, 2, . . . 7p+1} defined on vertices by 

2,1j

2jp7)v(g

12j6p6)v(g

15j6p6)v(g

1p7)v(g

j3

1j3

1j3

1


























 

 

2pj1

jp6)v(g

j6)v(g

3j6)v(g

6j3

7j3

5j3






















 

 
Defined on edges by 

nj1

jn6)v(g

2j6)vv(g

5j6)vv(g

6j3

1j31

1j31






















 

 

1pj1
1j6)vv(g

4j6)vv(g

4j33j3

3j32j3
















 

g(vj+1vj+2) = 6p + 3j − 7 for j = 1, 2 

This labeling serves as a 3 -constrained total labeling for .DP
4  

 
4  Outcomes of Snake Related Graphs 
Theorem 4.1. Double triangular snake graph DTp for p ≥ 2 is a 3 –constrained total Graph. 
 
Proof. Double triangular snake graph is made up of V = {wj : 1 ≤ j ≤ p} ∪ {uj, vj :1 ≤ j ≤ p − 1} 
and E = {wjwj+1,wjuj ,wj+1uj,wjvj,wj+1vj : 1 ≤ j ≤ p − 1} 
with |V | = 3p − 2 and |E| = 5p − 5 . Consider a total labeling g : V UE → {1, 2, . . . , 8p − 7} on 
DTp in to three events. 
Case 1. If p ≡ 0 (mod 3) then, 

1pj1
p1j)v(g

j)u(g

j

j
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 3

p
j1

9j6p6)w(g

10j6p6)w(g

11j6p6)w(g

j

j

j

3
p2

3
n

 
We label the edges 























3

p
j1

7j6p6)ww(g

8j6p6)ww(g

1jj

1jj

3
p

3
p

 

1pj1

5p5j)wv(g

4p4j)wv(g

3p3j)wu(g

2p2j)wu(g

1jj

jj

1jj

jj
































 

 







 


1

3

p
j1for6j6p6)ww(g

1jj
3

p2

3

p2  

This labeling serves as a 3 -constrained total labeling for D(Tp) if 
p = 3k. 
 
Case 2. If p = 3k + 1, then 

1pj1
1jp)v(g

j)u(g

j

j











 







 


3

2p
j1for11j6p6)w(g j  







 


































3

1p
j1

6j6p6wg

7j6p6wg

j

j

3

1p2

3

2p

 

We label the edges 



ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023) 

 

 
 
 
 

 
9870  

1pj1

j5p5)wv(g

j4p4)wv(g

j3p3)wu(g

j2p2)wu(g

1jj

jj

1jj

jj



























 

3

1p
j1

9j6p6ww(g

10j6p6ww(g

8j6p6w`w(g

1j
3

2n2
j

3

2p2

1j
3

1p
j

3

1p

1jj






































 

which serves as a 3 -constrained total labeling for D(Tp) if p ≡ 1(mod 3)  
Case 3. If p ≡ 2( mod 3) then we label the vertices 

)1p(j1
1jp)v(g

j)u(g

j

j











 

 
3

1p
j1

9j6p6wg

11j6p6wg

j

j

3
1p2





















 

3

2p
j1for7j6p6wg

j
3

1p













  

 

1pj1

j5p5)wv(g

j4p4)wv(g

j3p3)wu(g

j2p2)wu(g

1jj

jj

1jj

jj



























 

The edges 

3

2p
j16j6p6)ww(g

8j6p6)ww(g

1j
3

1p2
j

3

1p2

1jj 




















 

3

1p
j1for10j6p6wwg

1j
3

2p
j

3

2p
















  

This labeling serves as a 3 -constrained total labeling for D(Tp) if 
p ≡ 2 (mod 3). 
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Theorem 4.2. The chain sum graph of first kind is a 3 -constrained total Graph for n ≥ 2 
Proof. The chain sum graph of first kind consists of vertex set 
V = {vj : 1 ≤ j ≤ p} ∪ {uj ,wj : 1 ≤ j ≤ p − 1} and edge set 
E = {ujvj, ujvj+1,wjvj, wjvj+1, ujwj : 1 ≤ j ≤ p − 1} with |V | = 3p − 2 and 
|E| = 5p − 5. Consider a labeling g : V ∪ E → {1, 2,… ,8p − 7} defined on vertices by. 

1pj1
1jp)w(f

j)u(f

j

j








  

pj1for6jp6)v(f j   

Defined on edges by  

)1p(j1

5jp5)vw(f

4jp4)vw(f

3jp3)vu(f

2jp2)vu(f

1jj

jj

1jj

jj



























 

  Now it is simple to prove that chain sum graph of first kind satisfy 3 – Constrained 
total labeling. 
Theorem 4.3. Triple triangular snake graph T(Tp) is a 3 -constrained total labeled graph. 
 
 

 
Figure 3: 3 constrained total labeling of Triple triangular snake graph T(Tp) 

 
Proof. Let graph G = T(Tp) be made up of vertex set V = {vj : 1 ≤ j ≤ p + 1} ∪ {wj, xj, uj : 1 ≤ j ≤ 
p} and an edge set E = {vjuj, vj+1uj, vjwj, vj+1wj, vjxj , vj+1xj, vjvj+1 : 1 ≤ j ≤ p} where, |V | = 4p+1 
and |E| = 7p . Let us define a total labeling g : VUE → {1, 2, . . . 11p + 1} on T(Tp) into two 
events. 
Case 1: If p = 2k then, 
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2

p
j1

1
2

p9
j)v(g

1p5j)w(g

2
2

p3
j3)u(g

1
2

p3
j3)u(g

2j3)x(g

1j3)x(g

j2

j

1j2

j2

1j2

j2






































 

2

2p
j1forp3j)v(g 1j2


  

We also define  

pj1

1p9j)wv(g

1
2

p7
j)xv(g

1p7j)xv(g

jj

j1j

jj



















  

 

pj1

j3)uv(g

1p8j)uv(g

1p6j)uv(g

1p10j)wv(g

1jj

j1j

jj

j1j





























 

Here the total labeling shows that T(Tp) is a 3 -constrained total labeled graph. 
Case 2: If p ≡ 1 (mod 2) we define 

2

1p
j1

2

1p3
j3)u(g

1j3)x(g

j2

j2 
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2

1p
j1

p3j)v(g
2

1p9
j)v(g

2

5p3
j3)u(g

2j3)x(g

1j2

j2

1j2

1j2


































 

pj1for1p5j)w(g j   

We also define 
 

pj1

1jp9)wv(g

1j
2

p7
)xv(g

1jp7)xv(g

jj

j1j

jj



















  

 

pj1

1jp8)uv(g

j3)vv(g

1jp6)uv(g

1jp10)wv(g

j1j

1jj

jj

j1j





























 

This is a 3 -constrained total labeled graph.  
Theorem 4.4. Triple quadrilateral snake graph T(Qp) is a 3 -constrained total labeled graph. 
Proof. Triple quadrilateral snake graph has vertex set 
V = {tj, uj, vj, wj, xj, yj, zj, vj+1 : 1 ≤ j ≤ p} and edge set E =              {vjvj+1, vjwj, wjtj, tjvj+1, vjzj, zjxj, 
xjvj+1, vjuj, ujyj, yjvj+1 : 1 ≤ j ≤ p} with     |V | = 7p + 1 and |E| = 10p. Now we consider the total 
labeling g :      V UE → {1, 2, . . . 17p + 1} into two events. 
 
Case 1: If p ≡ 0 (mod 2), then 

 
Figure 4: 3 constrained total labeling of Triple quadrilateral snake graph T(Qp) 
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2

p
j1

1
2

p3
j3)u(g

1
2

p3
j3)u(g

1
2

p9
j)v(g

2j3)z(g

1j3)z(g

1j2

j2

j2

1j2

j2




































 

1
2

p
j1forp3j)v(g 1j2   

 

pj1

1p13j)x(g

1p12j)t(g

1p11j)w(g

1p14j)x(g

j

j

j

j























 

We also define, 

pj1

1p9j)wv(g

1
2

p7
j)vx(g

1p16j)xz(g

1p7j)zv(g

jj

1jj

jj

jj
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pj1

1p8j)vy(g

1p15j)yu(g

1p6j)uv(g

j3)vv(g

1p10j)ut(g

1p5j)tw(g

1jj

jj

jj

1jj

1jj

jj





































 

Case 2: If p ≡ 1 (mod 2) we define 

2

1p
j1

2

1p3
j3)u(g

1j3)z(g

j2

j2 













 

pj1for1p12j)t(g

1p11j)w(g

1p14j)x(g
2

1p
j1for

2

5p3
j3)v(g

p3j)v(g
2

1p9
j)v(g

2j3)z(g

j

j

j

1j2

1j2

j2

1j2


























 

 
We also define 
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.pi1for1p8j)vy(g

1p15j)yu(g

j3)vv(g

1p10j)vt(g

1p5j)tw(g

1p9j)wv(g
2

1p7
j)ux(g

1p16j)xz(g

1p7j)zv(g

1jj

jj

1jj

1jj

jj

jj

1jj

jj

jj




























 

 
Theorem 4.5. Zig-Zag graph Z(Tp) is a 3 -constrained total labeled graph. 

 
Figure 5: 3 constrained total labeling of Zig-Zag graph Z(Tn) 

 

Proof. Zig-Zag graph consists of V = {xj : 1 ≤ j ≤ 
2

1p 
}∪ {yj : 1 ≤ j ≤ 

2

1p 
}∪ {yj :1 ≤ j ≤ p} , E 

= {xjv2j+1, v2j−1xj , xjv2j, yjv2j, yj+1v2j : 1 ≤ j ≤ 
2

1p 
} ∪ {v2j−1yj : 1 ≤ j ≤ 

2

1p 
}∪ {vjvj+1 : 1 ≤ j ≤ p 

− 1} with |V | = 2p and |E| = 4p − 3 . Now let us define a total labeling g : V UE → {1, 2, . . . 6p 
− 3} on vertices of Z(Tp) as 

2

1p
j1

j)x(g

2j)v(g

j

j2 
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2

1p
j1

2

1p3
j)y(g

2

1p
j)v(g

j

1j2 

















 

Edges are labeled as 

2

1p
j1for

2

3p7
j)yv(g jj2





  

pj1

2

5p11
j)vv(g

2

3p9
j)vy(g

1p4j)vy(g

2p5j)vv(g
2

1p5
j)vx(g

p2j)xv(g

1p3j)vx(g

1j2j2

j21j

j2j

j21j2

j2j

j1j2

1j2j




















































 

Theorem 4.6. Double squared chain graph DSC for p ≤ 3 is a 3 -constrained total labeled graph. 
 
Proof. Let V = {vj : 1 ≤ j ≤ p}∪ {uj, wj, xj, yj : 1 ≤ j ≤ p − 1} and            E = {vjuj, ujvj+1, vjwj, wjvj+1, 
vjxj, xjvj+1, vjyj, yjvj+1 : 1 ≤ j ≤ p − 1} for Double squared chain graph respectively where |V | = 5p 
− 4 and |E| = 8p − 8. Define a total labeling g : V UE → {1, 2,…. , 13p − 12} on vertices of DSC 
as  

g(vj) = j + 4p − 4 for 1 ≤  j  ≤  p 
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1pj1

10p11j)vy(g

9p10j)yv(g

7p8j)vx(g

6p7j)xv(g

5p6j)vw(g

4p5j)wv(g

3p3j)vu(g

1pj)uv(g

1jj

jj

1jj

jj

1jj

jj

1jj

jj














































 

 

1pj1

11p12j)y(g

8p9j)x(g

2p2j)w(g

j)u(g

j

j

j

j























 

 
Conclusion 
  In this paper, we dealt with 3 constrained total labeling and defined some classic 
graphs. Then we obtained 3 constrained total labeling for cycle and snake related graphs. 
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