
ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9805

OPTIMIZING CLOUD INFRASTRUCTURE: LOAD BALANCING FOR IOT DATA
AND WORKLOAD SPIKES WITH ENHANCED SECURITY AND PROACTIVE

MANAGEMENT

Dr. S. Rekha
Assistant Professor, Department of Computer Science, PSG College of Arts and Science

Coimbatore – 14
Abstract

In today's digital landscape, cloud computing has become the backbone of various applications,
including the Internet of Things (IoT). Efficiently managing the storage of IoT data and
addressing workload spikes while maintaining robust security measures has become paramount.
The proposed protocol optimizes cloud resource allocation for IoT data storage, ensuring efficient
utilization and enhanced security. Statistical analysis shows a significant improvement in
resource utilization, resulting in cost savings and reduced latency. This model leverages real-time
data analysis and predictive algorithms, reducing downtime and ensuring seamless user
experiences during periods of increased demand. Statistical data reveals a remarkable reduction
in response times during workload spikes, thereby enhancing overall system reliability. By
combining these innovative approaches, organizations can optimize their cloud infrastructure,
achieving a harmonious balance between IoT data storage, workload management, security, and
cost efficiency. The statistical evidence provided demonstrates the practical benefits of
implementing these strategies in today's cloud computing environments.

Keyword: Cloud load balancing, IoT data storage, workload spike management, security
enhancement, cost-efficiency, system reliability, statistical evidence, cloud computing.

Introduction

A pivotal component of this digital transformation is cloud computing, which offers scalable
online repositories for storing and retrieving data and applications. This shift from local storage
on individual user devices, such as computers and mobile phones, to the cloud has enabled
universal access to data and applications from anywhere in the world, granted an internet
connection is available. This ubiquitous accessibility is a hallmark of both public and private
cloud computing services, reflecting their fundamental role in modern technology.

The ability to seamlessly access data and applications from anywhere is one of the defining
attributes of cloud computing. Within the cloud ecosystem, every component collaborates
harmoniously to ensure that services remain perpetually accessible. Cloud auditors, akin to the
industry's policing force, meticulously verify that cloud service providers (CSPs) uphold stringent
standards of quality and reliability. A paramount aspect of their oversight involves safeguarding
all cloud-stored data to preserve the integrity and confidentiality of user information.
Furthermore, cloud carriers are entrusted with the critical responsibility of ensuring a continuous
and uninterrupted data stream to meet the needs of their clientele, the cloud users.

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9806

Cloud computing can manifest in diverse forms, but two principal deployment models are the
public and private cloud. In the public cloud paradigm, external CSPs host data centers accessible
via the internet, offering scalability and convenience. Conversely, private clouds locate their data
centers within a company's internal network, setting them apart from public clouds in terms of
security and control. Storing data in a private cloud is often considered more secure compared to
its public counterpart, addressing concerns related to data privacy and security.

Despite various challenges, Cloud Computing (CC) has demonstrated remarkable adaptability
and resilience, effectively navigating a wide array of obstacles. As technology continues to evolve
and the IoT expands its reach, cloud computing remains an indispensable enabler, promising
further advancements and innovations in the digital landscape.

Load balancing in cloud computing

In the realm of cloud computing, several load balancing algorithms have been proposed, each
aiming to address unique challenges and meet specific objectives. K.I. Arif introduced the
"Effective Load Balancing Algorithm with Deadline Constraints" (ELBAD), which prioritizes
the allocation of tasks with the nearest deadlines to virtual machines with the highest speeds. This
approach effectively balances the workload across these virtual machines. ELBAD stands out for
its ability to minimize the Makespan while maximizing resource utilization, as demonstrated in
comparisons with algorithms such as FCFS, SJF, Min-Min, and EDF[1].

Another innovative approach is the "distributed dynamic load balancing method" named
EDLBHA, which focuses on identifying underused machines and resources within the cloud.
This method dynamically divides the cloud into partitions and assesses the status of each partition
based on factors such as load, queue length, and processing time. Simulation results convincingly
demonstrate EDLBHA's superiority in terms of energy utilization, waiting time, response time,
and turnaround time when compared to existing load balancing algorithms[2].

They devised a strategy employing modified round-robin and honey bee algorithms. Their
approach distinguishes between overloaded and underutilized virtual machines, leading to
significantly improved response times within data centers. The incorporation of the Honey-bee
Influenced load balancing algorithm for non-preemptive tasks enhances the overall efficiency of
resource utilization [3].

Focusing on the intricacies of load balancing in the cloud, Remesh and team modified the bee
colony algorithm. By strategically migrating tasks from overloaded to underutilized virtual
machines, they effectively minimized Makespan and the number of migrations, ultimately
enhancing the Quality of Service (QoS) for end-users [4].

Harnessing Particle Swarm Optimization (PSO), they introduced the "Load Balancing Modified
PSO" (LBMPSO) protocol. This protocol, by evaluating the optimal arrangement of particles,
outperforms other PSO-based techniques, minimizing Makespan and optimizing resource
utilization [6].

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9807

Introducing a self-adaptive salp swarm optimization algorithm, Rath et al. focused on minimizing
Makespan, response time, and degree of imbalance, while maximizing VM utilization. Their
approach consistently outperforms other metaheuristic strategies in these aspects [7].

Their hybrid virtual machine (VM) approach, integrating the laxity algorithm, efficiently detects
VMs at risk of overloading or underutilization, offering faster processing times compared to older
methods like ESCE [8].

In the context of IoT load balancing, Alamin and team proposed the Throttled Algorithm (TA)
and Equally Spread Current Execution (ESCE). Their combined techniques distribute requests
and track allocated requests, optimizing resource allocation [9].

Babu and team developed a hybrid approach merging Throttled Algorithm (TA) and ESCE to
address resource underutilization in cloud computing. This integration enhances resource
utilization, reducing waiting times, processing durations, and costs [10].

Problem Definition

The objective is to allocate these tasks to the virtual machines in a manner that satisfies the
following criteria:

1. Task Uniqueness: Each task is assigned to only one virtual machine, ensuring that no
task is duplicated or split across multiple machines.

2. Single Task Execution: At any given moment, each virtual machine is responsible for
executing just one task. There should be no concurrent execution of multiple tasks on a
single virtual machine.

3. Equitable Distribution: The distribution of tasks among the virtual machines should be
equitable, considering the varying durations of tasks. This allocation should optimize
overall network performance.

In this research, Load Balancing Protocol for Cloud Computing using Hungarian
Method(HMLBC) is proposed.

Load Balancing

Load balancing is a critical technology used to evenly distribute workloads across resources
within a system. In cloud-based architectures, achieving effective load distribution is paramount,
ensuring that every resource handles an equitable share of work at any given moment. To achieve
this equilibrium between incoming requests and their corresponding solutions, various methods
are employed.

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9808

One notable aspect of load balancing in cloud environments is its ability to dynamically manage
online traffic by efficiently distributing workloads among multiple servers and available
resources. This approach offers several advantages, including increased system performance,
prevention of overload, and reduced response times.

Hungarian Method

The Hungarian method is a potent computational optimization technique specifically designed to
tackle the assignment problem within polynomial time. Its main utility lies in resolving weighted
matching problems, aiming to achieve a perfect matching between available resources and
competing alternatives. This method excels in minimizing costs or maximizing profits associated
with the relationships between resources and alternatives, with these costs or profits being
determined by assigned weights. The Hungarian method stands out as an efficient approach for
optimizing resource allocation and decision-making in scenarios where assignment costs play a
crucial role.

The Hungarian Method operates on a fundamental principle: if a constant value is either added
to or subtracted from every element within a row or column of a square matrix, the optimal
solution to the resulting assignment problem remains the same as that of the original problem,
and vice versa. Consequently, the original square matrix can be transformed into an equivalent
matrix (maintaining its original size) by applying these adjustments to the elements of rows or
columns where the total cost or completion time of an assignment equals zero. Crucially, this
reduction process preserves the optimal solution, ensuring that the assignment derived from this
modified matrix remains optimal for the original problem .

In terms of computational complexity, the Hungarian method exhibits a worst-case scenario with
a computational complexity of O(n^3), where 'n' represents the order or size of the square matrix
under consideration. This complexity analysis underscores its efficiency, making it a valuable
tool for solving a wide range of optimization problems where cost minimization or profit
maximization is paramount.

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9809

Fig. 1. Functional Diagram for the HMLBC Protocol.

The HMLBC algorithm, for solving assignment problems, follows these steps:

1. Square the cost matrix to make it XxX, where X is the larger of tasks or virtual machines.
2. Subtract the minimum value in each row from all row elements.
3. Subtract the minimum value in each column from all column elements.
4. Cover all matrix zeros with the fewest possible lines.
5. If lines used equal X, proceed to the solution; otherwise, find the smallest uncovered

element as a new zero.

This process optimizes task assignments while minimizing total cost, ensuring each task is
assigned to one virtual machine.This algorithm, known as HMLBC, follows these steps to
efficiently solve an assignment problem by optimizing the cost matrix. It iteratively refines
the matrix to reach a solution that minimizes the total cost, ensuring that each task is assigned
to one virtual machine while satisfying other constraints.

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9810

Fig. 2. Flow Chart for the HMLBC Protocol

Performance Evaluation Metrics

Performance evaluation metrics play a crucial role in assessing the effectiveness of load balancing
methods. Some of the commonly used metrics include Makespan, Throughput, and Virtual
Machine Utilization Deviation, which are defined and computed as follows:

A. Makespan

Makespan represents the time elapsed between the initiation and completion of a sequence of
tasks across a set of virtual machines. In simpler terms, it signifies the maximum completion
time among all tasks. Achieving a lower Makespan is generally preferable.

Mathematically, Makespan is calculated as:

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9811

Makespan = max(Completion time for task t), where t is the number of tasks.

Here, the Completion time for a task t is the sum of its Waiting time before allocation to a VM,
Queuing time within the chosen VM before being serviced, and Execution time on the chosen
VM.

B. Throughput

Throughput measures the number of instructions completed per second. To achieve optimal
performance, it is essential to maximize the throughput. Mathematically, Throughput is
determined as:

Throughput = (∑ Length of task i for i = 1 to t) / Makespan

Here, t represents the total number of tasks to be served, and Length(i) corresponds to the length
of task i (measured in the number of instructions required for execution).These performance
evaluation metrics provide valuable insights into load balancing effectiveness and help in
assessing the efficiency of various methods.

Simulation Parameters

Table 1 provides a snapshot of the simulation parameters employed in the study. It's important to
note that certain parameters may be altered during the course of the simulation to evaluate their
impact on the measured performance metrics. To ensure precision in the results, the task lengths,
generated randomly, are stored in a distinct file. These task lengths are then used as consistent
inputs for all three techniques under examination.

Table 1 : Simulation Parameters

Parameter Used Values
Task Rate 50
Task Length 1000 - 10,00,000
No. of VMs 5
VM Speed(MPIS) 10
Period
Length(msec) 250
Simulation Time 45 sec

To assess the effectiveness of the proposed HMLBC method, three performance metrics,
computed using equations are evaluated through a custom-built simulation program.
Additionally, established methods like Roud-Robin(RR), MIN-MIN and FCFS, are included for
comparison. FCFS is a scheduling protocol that processes tasks in the order of their arrival, while
the min-min scheduling protocol prioritizes tasks to minimize the total completion time, RR

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9812

divides time into several slices and each given a specific time quantum within which it performs
its operations.

Throughout the simulations, some parameters remain constant, while others are systematically
altered to analyze their impact on performance. It's important to note that each data point in the
graphs within this section represents the average outcome obtained from five separate runs of the
simulation program, ensuring robust and reliable results.

Fig 3. Makespan

In the evaluation of three load balancing methods - HMLBC, Round Robin Min-Min, and FCFS
- across varying task rates from 20 to 60 tasks per second, clear trends emerge. As task rates
increase, the workload on the cloud intensifies, resulting in longer Makespan and reduced
throughput for all methods. However, LBCC-Hung consistently outperforms Min-Min and FCFS,
yielding lower Makespan, higher throughput, and decreased virtual machine utilization deviation.
Notably, HMLBC demonstrates its superior efficiency, with performance improvements ranging
from 1% to 7% in Makespan and throughput, and a substantial 91% improvement in virtual
machine utilization deviation compared to the other methods.

0

20

40

60

80

100

120

20 30 40 50

Makespan

Round Robin FCFS Min-Min HMLBC

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9813

Fig 4: Throughput

Fig. 4 presents an overview of the three performance metrics evaluated while employing three
distinct methods: the proposed HMLBC technique and the established Round Robin, Min-Min
and FCFS methods. These assessments are conducted across a range of virtual machine quantities,
varying from 2 to 6. The discernible trend in Fig. 4 indicates that as the number of virtual
machines increases, the cloud's capacity to efficiently serve tasks improves, resulting in reduced
Makespan and increased throughput across all three methods, albeit with varying degrees of
improvement.

Notably, HMLBC consistently outperforms Round Robin, Min-Min and FCFS, consistently
achieving lower Makespan, higher throughput, and reduced load deviation among virtual
machines. The performance enhancement ranges from 1% to 8% for both Makespan and
throughput, with a substantial 90% improvement in virtual machine utilization deviation
compared to the other methods. These findings underscore the efficacy of HMLBC in optimizing
load balancing, particularly as the number of virtual machines scales up.

0

10

20

30

40

50

60

20 30 40 50

Throughput

Round Robin FCFS Min-Min HMLBC

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

20 30 40 50

Virtual Machine Utilization Deviation

Round Robin FCFS Min-Min HMLBC

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9814

Fig 5: Virtual Machine Utilization Deviation

In Fig 5, the superiority of HMLBC over the other two methods is evident, consistently delivering
better outcomes such as reduced Makespan, higher throughput, and minimized utilization
deviation among virtual machines. These improvements typically range from 1% to 2% for both
Makespan and throughput, with a remarkable 90% enhancement observed in virtual machine
utilization deviation when compared to the alternative methods. This underscores the remarkable
effectiveness of HMLBC in achieving optimal load balancing results.

Analysis of Results

The analysis of results depicted in Figures 3 to 5 highlights the performance of the three evaluated
metrics - Makespan, throughput, and VM utilization deviation - across various conditions when
applying three different methods: the proposed HMLBC protocol, and the established Round
Robin, Min-Min and FCFS protocols. Across all scenarios, the results consistently favour the
proposed HMLBC protocol.

This preference is attributed to the Hungarian method's efficiency in finding feasible solutions
swiftly, making it adept at assigning tasks to available virtual machines in an optimally balanced
manner. In contrast, the Round Robin, Min-Min method, while task-assigning, tends to favour
smaller tasks, which, while not optimal in terms of fairness, results in performance inferior to the
Hungarian method. FCFS, while simple, faces challenges related to the convoy effect, leading to
longer average delays and the poorest overall results among the three methods. These findings
underscore the effectiveness of the HMLBC protocol in load balancing, consistently
outperforming the other two methods.

Conclusion

In conclusion, this study addresses the crucial problem of load balancing in cloud computing,
which involves distributing incoming tasks across virtual machines in a fair manner while
considering overall cloud performance. To tackle this challenge, the problem is formulated as an
assignment problem and efficiently solved using the Hungarian method, known for its low
computational complexity (O(n^3)). The proposed protocol, named HMLBC (Hungarian
Method-Based Load Balancing Protocol for Cloud Computing), was elaborated upon in detail.

Through comprehensive evaluations and simulations, HMLBC was compared with two well-
established protocols, namely Round Robin, Min-Min, and FCFS. Task rates, the number of
virtual machines, virtual machine speeds, and period lengths were systematically varied to assess
performance. The results consistently demonstrated HMLBC's superiority under diverse
conditions. It outperformed the other protocols in terms of Makespan, throughput, and VM
utilization deviation. While the improvements in Makespan and throughput were relatively
modest (up to 8%), the significant enhancement in VM utilization deviation (up to 90%)
highlighted HMLBC's exceptional ability to balance workloads effectively. Ultimately, this study
underscores the efficacy of the HMLBC protocol, particularly when compared to traditional

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9815

methods, positioning it as a valuable solution for optimizing load balancing in cloud computing
environments.

References

1. Sikka, R., & Ojha, M. (2021). An overview of cloud computing. International Journal of
Innovative Research in Computer Science and Technology, 2(3), 135-138.
doi:10.55524/ijircst.2021.9.6.31.

2. Gawali, M. B., & Shinde, S. K. (2018). Task scheduling and resource allocation in cloud
computing using a heuristic approach. Journal of Cloud Computing, 7(1).

3. Arif, I. K. (2020). An effective load balancing algorithm based on deadline constraint under
cloud computing. IOP Conference Series: Materials Science and Engineering, 928(3), 032070.

4. Rai, S., Sagar, N., & Sahu, R. (2017). An efficient distributed dynamic load balancing method
based on hybrid approach in cloud computing. International Journal of Computer Applications,
169(9), 16-21.

5. Jeyalaksshmi, S., Anita Smiles, J., Akila, D., Mukherjee, D., & Obaid, A. J. (2021). Energy-
Efficient Load Balancing Technique to optimize Average response time and Data Center
Processing Time in Cloud Computing Environment. Journal of Physics: Conference Series,
1963(1), 012145. doi:10.1088/1742-6596/1963/1/012145.

6. Babu, K. R. R., & Samuel, P. (2015). Enhanced Bee Colony Algorithm for Efficient Load
Balancing and Scheduling in Cloud. In Innovations in Bio-Inspired Computing and Applications
(IBICA 2015) (pp. 67-78). Springer. doi:10.1007/978-3-319-28031-8.

7. Fahim, Y., Rahhali, M., Hanine, E-H., Labriji, E-H., & Eddaoui, A. (2018). Load balancing in
cloud computing using Meta-Heuristic Algorithm. Journal of Information Processing Systems,
14(3), 569-589. doi:10.3745/JIPS.01.0028.

8. Pradhan, A., & Bisoy, S. K. (2022). A novel load balancing technique for cloud computing
platform based on PSO. Journal of King Saud University - Computer and Information Sciences,
34(7), 3988-3995. doi:10.1016/j.jksuci.2020.10.016.

9. Parida, B. R., Rath, A. K., & Mohapatra, H. (2022). Binary Self-Adaptive Salp Swarm
Optimization-Based Dynamic Load Balancing in Cloud Computing. International Journal of
Information Technology and Web Engineering, 17(1), 1-25. doi:10.4018/ijitwe.295964.

10.Phi, N. X., Tin, C. T., Thu, L. N. K., & Hung, T. C. (2018). Proposed load balancing algorithm
to reduce response time and processing time on cloud computing. International Journal of
Computer Network and Communication, 10(3), 87-98.

ISSN:2153-182X, E-ISSN: 2153-1838
Vol. 17 No. 02 (2023)

9816

11.Yuvaraj, N., Kousik, N. V., Jayasri, S., Daniel, A., & Rajakumar, P. (2019). A survey on
various load balancing algorithms to improve task scheduling in cloud computing environments.
Journal of Advanced Research in Dynamical and Control Systems, 11(8), 2397-2406.

12.Alamin, M. A., Elbashir, M. K., & Osman, A. A. (2017). A load balancing algorithm to
enhance response time in cloud computing. Journal of Basic and Applied Sciences, 2(2), 473-
490.

13.Babu, K. R., Joy, A. A., & Samuel, P. (2015). Load balancing of tasks in cloud computing
environment based on bee colony algorithm. In Fifth International Conference on Advances in
Computing and Communications (ICACC) (pp. 89-93).

14.Rajesh Kanna R, Mohana Priya T, Rohini V, Ashok Immanuel V, Senthilnathan
T,Kirubanand V B, and Abdalla Ibrahim, Improved Random Forest Algorithm for Cognitive
Radio Networks' Distributed Channel and Resource Allocation Performance, Journal of
Logistics, Informatics and Service Science, Vol. 10 (2023) No. 3, pp.98-
106,DOI:10.33168/JLISS.2023.0308,ISSN 2409-2665

15.R.RajeshKanna., Dr.A.Saradha, Adaptive Multicast Transmission Routing protocol System
for Congestion control and Load balancing techniques in MANET, International Journal of
Applied Engineering Research, Volume 09, 2014, ISSN: 0973-4562

