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Abstract 
Since the amount of data has become a vital fuel to powering many real-world applications, many 
issues arise in data mining regarding storage and real-time aspects. Indeed, mining association 
rules is one of the strategies used to find associations and relationship rules among large sets of 
data items. However, this data does not always have precise values due to the fact that it may be 
either incomplete or uncertain, which is a challenging problem when applying mining algorithms. 
To deal with these issues, we propose a new approach for mining sequential rules from uncertain 
sequence databases that consists of two main steps: The first one is to extract the set of 
probabilistic rules, and the second one is to filter this set using the sequential information in the 
data. 
Keywords: Association rule, Sequential rule, uncertain data, probabilistic database, sequences 
database. 
 
1 Introduction 
Association rules mining is a powerful technique in the field of data mining [5]. This technique 
has already proved its strength in different contexts and especially in modeling the behavior of 
customers by analyzing a market-basket database representing the purchases of these customers. 
In this context, each association rule reflects how some purchases are associated with some 
others. 
Association rules mining has been extended to sequential databases which contain a set of 
sequences. Unlike classical transactional databases where the order of events does not matter, 
events in a set of sequences should respect some partial order. A sequential rule is a pattern 
extracted from original sequence database to reflect relevant associations between subsequences 
of events. Such a rule is then employed to identify and predict the occurrences of some 
subsequences among set of items [1]. Sequence databases are used in many domains, such as 
bioinformatics to store the DNA (DeoxyriboNucleic Acid) or Protein sequences, and marketing 
to store the purchases sequence of customers. 
In many real life applications, data could be stored and processed within missed or mislabeled 
information. For example, data collected from wireless sensors network may be uncertain due to 
external interfering factors or sensor aging, which makes the process of extracting association or 
sequential rules rather complicated and needs special treatment to deal with uncertain data. The 
uncertainty of this data is often modeled as an existential probability which is either associated 
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with every sequence in the database or with every item in each sequence in the database. Hence, 
if the probability of a sequence (item) is equal to one, this means that the occurrence of this 
sequence (item) is certain. 
This paper aims at solving the problem of extracting sequential rules from uncertain sequence 
data (uncertain sequence database). The remainder of this paper is organized as follows: In 
Section 2, the related work is discussed. In Section 3, we provide the definition as well as the 
formalization of the problem. The proposed approach is explained in section 4. Experimental 
results are presented in Section 5. Finally, Section 6 concludes the paper. 
2 Related work 
In this section, we present a review of the main related work to mining sequential rules from 
uncertain data. After a deep review of past literature, we noticed that the related work can be 
divided into two main categories: The first one is about finding frequent itemsets from 
probabilistic data, and the second one is about mining sequential patterns and rules from 
sequential data. Additionally, we can split the first category into three subcategories based on the 
method used to find the frequent itemsets: The first subcategory uses the concept of expected 
support. The second one consists of work that uses exact methods,i.e., developing methods to 
compute the exact probability of patterns frequencies while the third subcategory consists of 
approaches that rely on approximation models [22] in which the frequency probability of a pattern 
is approximated by a probability law . In the next few paragraphs, we are going to discuss a set 
of papers that cover all the categories. For more details, the reader can refer to two surveys that 
have successfully synthesized most of established research for mining uncertain data [9, 10]. 
Table 1 below represents a comparative summary for a set of key existing work related to our 
problem. 
Within the first category, which uses the expected support as a main metric, we discuss the study 
entitled ”Mining interesting patterns from uncertain databases” [23]. In this paper, the authors 
claim that all the proposed algorithms for mining frequent itemsets from uncertain database used 
support based constraint to reduce the search space, which is not enough because the frequent 
itemsets may have weak affinity. Therefore, they propose a new approach called Weighted 
Uncertain Interesting Pattern Mining (WUIPM), where they use the concept of expected support 
to identify the set of itemsets that are considered frequent, and propose a new tree structure 
WUIP-tree where a weight value is given for each item, which represents the importance of this 
item. Then, they introduce a new measure called weighted expected support confidence 
(wUConf) to mine interesting patterns with importance. The authors claim that WUIPM is faster 
than the other algorithms. 
In the paper entitled ”Mining Uncertain Data with Probabilistic Guarantees” [3], the authors aim 
to discover frequent patterns using an exact method, where they propose two algorithms to 
discover frequent patterns from probabilistic databases: The first one uses a bottom-up strategy 
while the second one uses a top-down strategy. Both algorithms are based on the possible world 
semantics. The authors explain how these algorithms can be extended to discover maximal 
frequent patterns to generate the set of association rules. 
The default way to deal with uncertainty data while mining for frequent itemsets is using possible 
world semantics. However, this is not efficient because When there is more uncertainty in the 
data, the number of possible worlds increases. The authors of the paper [21] propose a new 
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approach to solve this problem by using a probability distribution function with two models: the 
Poisson distribution and the normal distribution which can be classified under the first category 
that rely on approximation model. The objectives of this research are: 1) finding itemsets with 
frequentness probabilities that are greater than some threshold 2) mining itemsets with the k 
highest frequentness probabilities. The proposed approach consider both tuple and attribute 
uncertainty models. 
Since there are more than one possible world in uncertain database, the authors use S(Wj,I) to 
describe the support of an itemset I in possible world Wj than they define the probability that S(I) 
has a value of i, denoted by PrI(i) = Pwj∈W,S(Wj=i) Pr(wj), and probability mass function (pmf) 
PrI(i)(i = 1...n) named as the support pmf. Finally they define the concept of the frequentness 
probability of I: Prfreq(I) = Pi≥minsup PrI(i). Because computing this function is too expensive, 
the authors use the expected support and the two probability distribution (Poisson and normal 
distribution) to approximate the distribution of s(I) in efficient way. 
In a conclusion, they state that the models of expected support and Poisson approximation are 
both easy to implement and efficiently computed because pruning can be performed. However, 
with the model of Normal approximation pruning cannot be performed and its implementation 
require more effort than the previous two 
In the work presented in [4] the authors present an algorithm called ProFPGrowth, based on the 
classical FP-Growth algorithm. The main task of this algorithm is to mine a probabilistic database 
to extract the set of frequent itemsets known in this paper as the probabilistic frequent itemsets. 
They also introduce the probabilistic Frequent Pattern Tree, or ProFP-Tree which represents a 
transformation of the probabilistic database into a tree format to facilitate the process of getting 
information and to minimize the number of access to the original database. The identification of 
the set of probabilistic frequent itemsets is based on the generating functions. The authors claim 
that these functions reduce the computation complexity to O(N). 
Under the second category that deals with mining sequential patterns and rules from sequential 
data, we are going to review two papers, the first study presents the algorithm CMRules algorithm 
in a paper entitled ”Mining sequential rules common to several sequences” [1]. According to its 
authors, CMRules is widely used in applications such as: stock market analysis, weather 
observation, drought management and e-learning. To reduce the search space, the algorithm first 
transforms the sequence database into a transaction database. Then, it extracts the set of 
association rules that respect the minimum support and confidence thresholds in a classical way. 
After that, These association rules are examined to keep only those which respect the initial 
sequential ordering. In the end of this paper, the authors evaluate the CMRules algorithm in three 
ways: its time complexity, its performance on real datasets and its results in an intelligent agent 
in the international space station, where the agent became able to learn the sequential relationships 
between events common to its execution. The authors show that CMRules obtained interesting 
results in all these three contexts. 
The second study presents a new idea for mining sequential rules in the paper entitled ”ERMiner: 
Sequential Rule Mining Using Equivalence Classes” [14], where the authors start to discuss the 
problem of sequential rules mining by showing the drawback of an existing algorithm named 
(Rule Growth), which performs a costly database projection operation repeatedly. To fix this 
drawback, they use a novel searching method based on the equivalence classes to mine the set of 
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sequential rules, and they propose a data structure named SCM (Sparse Count Matrix) to reduce 
the search space. 

Table 1 a comparative summary of rule mining related work 
Works Year Type of data Target dataset based Algo Prog 

language 
CMRules [1] 2012 Sequences Sequential 

rules 
Kosarak dataset Apriori Unknown 

ProFP-Growth 
[4] 

2012 Probabilisitc Probabilistic 
frquent 
patterns 

artificial datasets 
The accidents 

dataset 

FP-Growth Unknown 

Liwen Sun et 
al[3] 

2010 Probabilisitc Probabilistic 
Association 

rules 

IBM data 
generator 

The 
accidents 
dataset 

Apriori with 
dynamic 

programing 

C++ 

ERMiner[14] 2014 Sequences Sequential 
Association 

rules 

Sign, Snake, 
FIFA BMS 

and 
Kosarak10k 

Equivalence 
Classes 

Java 

TP-rules[15] 2021 relational Association 
rules 

Boko Haram 
Bdataset 

Equivalence 
Classes 

uknown 

CM-SPAM 
algorithm[16] 

2020 Sequences frequent 
sequential 
pattern 

China 
pollution 

data PM2.5 

Sequential 
pattern 
mining 

uknown 

CARM[16] 2021 conventional 
data 

Association 
rules 

online energy 
data portals 

Context-
based 

association 
rule mining 

python 

TUFP 
algorithm [19] 

2020 Probabilistic top-k frequent 
patterns 

Chainstore, 
Foodmart, 
Retail and 

T10I4D100K, 

TUFP 
algorithm 

C 

WFSPM 
framework[17] 

2021 Sequences frequent 
sequential 
pattern 

WSpan and 
IUA 

MaxPWS 
pruning 

python 

approximation 
model[21] 

2013 Probabilistic frequent 
itemsets 

accidents 
T10I4D100k IBM 

Poisson and 
normal 

distribution 

C 

WUIPM 
algorithm[23] 

2016 Probabilistic frequent 
itemsets 

Frequent itemset 
mining 

implementations 
dataset repository 

Expected 
support 

WUIP-tree 
structure 

C/C++ 

3 Background and problem statement 
In the next paragraphs, we present the definitions of some basic concepts that are necessary for 
our work according to the type of the data (transactional, sequential and uncertain).Then, we 
conclude this section by giving the theoretical basics and the definitions of the exact problem 
considered in this paper. 
3.1 Transactional data 
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Association rule mining is one of the most important and well researched techniques of data 
mining. It aims at extracting interesting correlations, frequent patterns, associations or casual 
structures among sets of items in the transaction databases (TD) or other data repositories [6]. 
A Transaction database is defined as a set of transactions, where each transaction is a set of 
items, formally : TD = {t1,t2,t3...tn} where tx ⊆ I is a transaction and I = {i1,i2,i3....im} is the set of 
all items. 
An association rule between X and Y such that X,Y ⊆ I and X ∩ Y = ∅ is denoted by X → Y . 
Recall that the support of a subset of items X ⊆ I is defined as the number of transactions that 
contain this subset: Supp(X) = Card{t ∈ TD s.t. X ⊆ t}, and the support of a rule X → Y is 
defined as the support of the union of the left side and the right side of the rule: supp(X → Y ) = 
supp(X ∪Y ). The confidence of a rule is defined as the ratio between its support and the support 
of the left side of the rule : conf(X → Y ) = supp(X ∪ Y )/supp(X). 
An association rule X → Y is valid if and only if : Supp(X → Y ) ≥ minSup and Conf(X → Y ) ≥ 
minConf where minSup (resp. minConf) is a minimum support (resp. confidence) threshold. 
3.2 Sequential data 
Sequential database. A sequence database is a database that contains a set of sequences where 
each sequence is constituted from n ordered set of transactions. 
Formally, let I = {i1,i2,...,in} be a set of items. A sequence database (SD) is defined as a set of 
sequences S = {s1,s2,...,sn} where each sequence sx is an ordered list of transactions (itemsets): sx 

= {X1,X2,...,Xm} such that 
X1,X2,...,Xn ⊆ I [1]. 
Table 2 shows a sample of a sequence database containing five sequences. 

Table 2 A sequence database 

ID Seq Sequences 
Sequence 1 [{a},{b},{d},{e,f}] 
Sequence 2 [{a,b},{c},{d},{e}] 
Sequence 3 [{c,d},{f}] 
Sequence 4 [{a,e},{c,d},{f}] 
Sequence 5 [{a},{b,c},{d},{e}] 

Sequential rules. The property that characterizes sequence databases leads to the emergence of 
a new type of rule called sequential rule, which is defined in [1] and [7] as follows: A sequential 
rule X → Y is a relationship between two itemsets X,Y such that X∩Y = ∅. The interpretation of 
the rule X → Y is that if the items in X occur in some transactions of a sequence, the items in Y 
will occur in some transactions of the same sequence but afterward all the items of X. Note that 
items in X and in Y are unordered (they are not required to occur in the same transaction in a 
sequence). 
Sequential support and sequential confidence. To find the set of relevant sequential rules, the 
researchers used an adaptation of the two measures used to find association rules. The first one 
called sequential support, is given by: Sup(X • Y )/Card(S) while the second one called 
sequential confidence is given by: Sup(X • Y )/Sup(X). The notation sup(X • Y ) denotes the 
number of sequences where all the items of X appear before all the items of Y [8]. 

Uncertain data 
According to [2], there are two types of uncertainty in probabilistic databases: 
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• Tuple level uncertainty. Each tuple in the database has an existential probability attribute, this 
model is characterized by its simplicity in terms of design and query. Table 3 represent an 
example of this type of database[3]. 

• Attribute level uncertainty. The uncertainty is about the value of an attribute of a transactions. 
I.e. each attribute has its own value of existential probability, which indicate the degree of 
certitude of this value. Table 3 represent an example of this type of database[4]. 

Table 3 A probabilistic database example(Tuple level uncertainty vs Attribute level 
uncertainty). 

ID loc time speed trac weather prob 
t1 x 8-

9pm 
30-
40 

high Rain 0.1 

t2 x 7-
8am 

80-
90 

low null 1.0 

t3 x 8-
9pm 

80-
90 

low Foggy 0.5 

t4 x 8-
9pm 

30-
40 

high Rain 0.2 

t5 y 2-
3pm 

50-
60 

low Sunny 1.0 

TID Transaction 
1 (A, 1.0) (B, 0.2), (C, 0.5) 
2 (A, 0.1), (D, 1.0)) 
3 (A, 1.0), (B, 1.0), (C, 1.0), 

(D, 0.4) 
4 (A, 1.0), (B, 1.0), (D, 0.5) 
5 (B, 0.1), (C, 1.0) 

Problem definition 
In this paper we are interested in finding sequential rules from sequence databases that contain 
some uncertain data. The uncertainty is considered at the attribute level and it is modeled by the 
existential probability values associated to items. 

Definition 1 Given a set of items I = i1,i2,...,in, a probabilistic sequence database (PSDB) is 
defined as a set of sequences S = s1,s2,...,sn, where each sequence sx is an ordered list of 
transactions (itemsets), sx = X1,X2,...,Xm such that X1,X2,...,Xn ⊂ I. These transactions may contain 
items that are not certain, and the presence of an uncertain item in a transaction is defined by an 
existential probability (0 < p(item) < 1). The item is considered to be certain if the existential 
probability is equal to 1. 

In the following table (table 3.4) we consider the probabilistic sequence database which 
contains eight sequences. Each one containing certain and uncertain items. This PSDB is used 
as a running example in this paper. 

Table 4 Example of PSDB 
Sequences Items 
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1 (Z, 0.2),(W, 0.6) 
2 (X, 1.0), (Y, 1.0),(Z, 

1.0), (W, 0.4) 
3 (X, 1.0), (Y, 0.3), (Z, 

0.8) 
4 (X, 0.4), (Y, 0.7) 
5 (Y, 0.4), (Z, 1.0)) 
6 (X, 0.1), (Y, 1.0),(Z, 

1.0) 
7 (X, 1.0), (Y, 1.0), (W, 

1.0) 
8 (Y, 0.3), (Z, 1.0) 

The objective here is to extract the set of sequential rules that are considered as useful and 
strong enough. In other words, we look for rules that are ”sufficiently probable” and that respect 
the event order imposed in the sequences.There are established methods for extracting relevant 
rules from certain sequential data, known as sequential rules, as well as from uncertain and 
classical data, called probabilistic and association rules respectively. However, the focus of this 
paper is to combine these approaches in order to extract relevant rules from uncertain and 
sequential data, which we call ”probabilistic sequential rules”. The next section explains the 
method that we propose to extract the probabilistic sequential rules from uncertain sequence 
databases. 

The proposed Approach 
Before describing our proposal, let us present some assumptions that help to clearly and 
precisely specify our objectives. In this work, we assume that : 

• The data are stored in probabilistic sequence database (PSDB). 

• Each item is a singleton item (there is no nested sequences). 

• Each item in every sequence has an existential probability in the interval ]0,1] (items with 
probability equal to 0 do not occur at all and hence they are not presented in the database.) 

The key ideas on our proposal are as follows : 

• To deal with uncertainty of data, we use the expected support measure to evaluate the 
probabilistic frequency of subsequences and sequential rules. 

• To take into account the ordering constraints present in sequences, our approach operates in 
two phases: In the first phase the temporal information are ignored and a set of (classical) 
probabilistic rules is generated. Then, in the second phase, the rules generated in the first phase 
are filtered to keep only those that respect the temporal information. 

• Our proposition is an FP-Growth-style algorithm to mine sequential rules. 

Based on the problem definition and the set of assumptions presented above, we propose in this 
study an approach that takes place in six steps : 

1. Transforming the probabilistic sequence database (PSDB) into a probabilistic database (PDB). 
2. Extracting the set of singleton frequent items. 
3. Generating a structure called the probabilistic frequent pattern tree (PFPTree). 
4. Extracting the set of probabilistic frequent items by using the PFP-Tree. 
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5. Generating all probabilistic rules. 
6. Filtering this set of rules using the temporal information present in the sequence database. 

In the next sections we will give a detailed explication of each of the six steps stated above: 
Transforming PSDB into PDB 
We will apply a simple principle used in [1] to transform a probabilistic sequence database into 
a probabilistic database, which consists of ignoring the order of items imposed by the sequential 
nature of data to obtain a normal probabilistic database. it means that sequences are treated just 
like sets of items. 

Extracting the set of singleton frequent patterns 
In order to identify the set of singleton frequent patterns from the PDB, we have to consider all 
possible worlds generated from this PDB. Each possible world is obtained by taking a decision 
for each uncertain item whether it actually occurs or not. Hence a possible world wi (the ith 

possible world) represents a possible (certain) realization of the PDB with a probability denoted 
by P(wi). Using possible worlds, the expected support of an item A in the PDB by the following 
equation: 

W 

 ExpSup(A) = XP(wi)Awi (1) 
i=1 

The expected support of A is equal to the sum of multiplications of the probability of each 
possible world and the number of occurrences of A in this world (denoted in the equation by 
Awi). However, the use of this equation is very expensive in terms of execution time, because 
the number of possible worlds generated from a PDB increases exponentially according to the 
number of uncertain items (Card(W) = 2(number of uncertain items)). Fortunately, we can 
prove that (the proof is available in the paper [12]) the expected support of an item A may be 
computed without computing all possible worlds as follows: 

PDB 

 ExpSup(A) = XY P(x) (2) 
j=1 x∈A 

By applying Equation 2 on the running example (table 3.4) to calculate the expected support for 
each singleton item, we found that: ExpSup(X) = 
3.5,ExpSup(Y ) = 4.7,ExpSup(Z) = 5,ExpSup(W) = 2. 

4.3 Constructing the probabilistic frequent pattern tree 
The method for constructing the probabilistic frequent pattern tree (PFPtree) is inspired from [4], 
where we adapt the algorithm used by the authors to construct our version of the PFP-tree. In our 
work the construction of PFP-Tree needs a single scan of the PDB. The proposed algorithm takes 
the transactions of the PDB one by one and inserts them into the PFP-Tree, such that each 
transaction is represented by a path in the PFP-Tree. The transaction starts from the root of the 
tree (en empty node), and each node represents a singleton item in a transaction. The tree is 
structured as follows (let us consider a node n in the PFP-Tree) : 
• n.item: a label used to denote the node. The label of the item is used here because each 
node represents one item. 
• n.list: a list of transactions where the item of this node is present. This list is composed of 
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a set of pairs: Each pair contains the transaction label and the existential probability of the item 
in this transaction (if the item is certain we put the existential probability equals 1). 
• n.next: a pointer to the next node in the tree. This field should be null if the current node 
is a leaf. 

label list next 

A t1 = 1 t2 = 
0.6 

tj 

The algorithm starts with a tree that contains a single element; which is the root of the tree (null 
element). Then, it scans the transactions one by one, starting with transaction t1 that will be 
inserted directly as a path in the tree (path = root → t1.item1 → t1.item2... → t1.itemn) see figure 
1. 
The following transactions have two possibilities: either the path corresponding to the current 
transaction already exists in the tree. In this case an update is made by adding the label of this 
transaction and the existential probability of the current item in the corresponding node in the 
transactions list. Or the path corresponding to the currant transaction does not exist in the tree, 
thus, we completely create it. 
Figure 2 represents the whole PFP-Tree generated after executing the algorithm on the running 
example. 

Extracting the set of probabilistic frequent itemsets 
In this step, we extract the set of probabilistic frequent itemsets based on the singleton frequent 
items identified in the previous step. Because the data are not all certain, we employ the concept 
of expected support used for the singleton frequent item defined by equation 2. For instance, by 
applying the equation 2 on the running example (table 3.4) to calculate the expected support for 
the itemset {Z,W}, we find that ExpSup({Z,W}) = 1.9. 

Generating probabilistic rules 
The probabilistic rules is generated from the set of probabilistic frequent itemsets, where for 
each frequent itemset If, all its nonempty subsets are generated. For example, if s is a subset of 
If, we consider the rule R : s → If − s if its confidence (see equation 2) is greater or equal to 
minConf, where minConf is the minimum confidence thresholds. Of course, when we want to 
compute the confidence of a generated rule we simply use the PFP-tree generated in 
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Fig. 1 Evolution (left to right) of the PFP-Tree after inserting the first three transactions step 3 

rather than accessing the database. 

 Conf(R) = probSupp(If)/probSupp(S) (3) 

Filtering probabilistic rules 
After extracting the set of probabilistic rules, we move to the step of sequential filtering, such 
that for each rule found in the previous step we will calculate the sequential support and 
confidence as they are defined in this paper in section 3, to finally select only rules that have 
sequential confidence greater than or equal to a predefined value named minimum sequential 
confidence and denoted SeqConf. 

If x → y is a rule in the set of rules found in the previous step, we define : 

 SeqSupp(x → y) = Sup(x • y)/Card(S) (4) 

The notation sup(x•y) represents the number of sequences where x appears before y in the 
database and Card(S) denotes the number of sequences in the database. 
The sequential confidence of the rule is calculated by dividing the number of sequences where 
the left side appears before the right side of the rule, by the number of sequences that contain 
the left side of the rule : 

 SeqConf(x → y) = Sup(x • y)/Supp(x) (5) 

 
Fig. 2 The PFP-Tree after scanning the whole PDB 

At the end of this step, only the rules with sequential confidence greater than or equal to a 
predefined threshold are selected. 
5 Experimental results 
To implement the proposed algorithm, we have used Python as a programming language installed 
on a Windows machine powered by Intel Core i5 processor with 16 GB of memory. For testing 
our algorithm, we have used both real dataset (Mushroom [20]) and synthetic datasets: 
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5.1 Testing the algorithm on synthetic data 
Before discussing our results, we would like to give the reader an overview of our synthetic data. 
Our data are generated randomly. We simulated the definition of a probabilistic sequence 
database (PSDB) and generated data that contained a set of sequences. Each sequence is 
composed of a set of items, where each item has its own existential probability between zero and 
one. Then we create a set of files (10 files) that contain a number of these sequences. The first 
file has 100 sequences and the last one has 8k sequences. 
Figure 3-(a) shows the time taken by the proposed algorithm to generate the set of sequential 
rules measured in seconds. The time depends on the number of sequences in data. We can see 
three plots in the figure 3-(a), one for the time taken by the whole algorithm, while the second for 
the time taken to generate the set of probabilistic rules and the last one for the time 

 
Fig. 3 Temporal and Spatial Complexity of the proposed algorithm tested on synthetic 

data 
taken for the sequential filtering, where the value of the first one is equal to the sum of the two 
remaining times. 
It is obvious that the execution time increases when the number of sequences increases. However, 
in terms of time complexity, the figure shows that the time complexity of the proposed algorithm 
is very acceptable and falls under O(nlog(n)) or O(n2) in the worst case using the big O notations 
to measure time complexity of an algorithm. The second graph (figure 3 (b)) represents the space 
complexity of the proposed algorithm, where the x-axis represents the number of sequences in 
our synthetic data, and the y-axis is the amount of memory needed to execute our proposed 
algorithm in megabytes. This test reveals that the memory space consumed by the algorithm is 
increasing according to the volume of input data. However, the algorithm shows its best 
performance when the input data becomes larger where the memory space used in that phase 
stays stable and continue to increase but with negligible rate. 
5.2 Testing the algorithm on real data 
The mushroom data set [20] used in this paper includes descriptions of academic samples 
corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each 
species was determined as to be absolutely edible, absolutely poisonous, or edible of unknown 
and not recommended. The latter category is combined with toxic substances. The Guide states 
that there’s no simple rule for determining the edibility of a mushroom. In this phase we didn’t 
find a probabilistic sequence database used as dataset or a benchmark for evaluating these kind 
of researches. However a sequence database may be obtained from a transactional database by 
just considering order of items inside each transaction, and a probabilistic database is just an 
ordinary database where each item has its own existential probability. Therefore, we used the 
mushroom database and considered each transaction as a sequence and we add for each item a 
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random value between zero and one represents an existential probability. 

 
Fig. 4 Temporal and Spatial Complexity of the proposed algorithm tested on real data 

Figure 4 shows the spatial and temporal complexity of the proposed algorithm applied to the 
mushroom dataset. This set of experiments are performed with the value of (minimum support / 
number of sequences = 0.5). This figure contains two graphs, the first one 4-(a) shows the space 
complexity of our algorithm, where the x-axis shows the size of the dataset measured in terms of 
the number of sequences, while the amount of memory space used in each experiment appears 
on the y-axis. The graph confirms that the behavior of the proposed algorithm can be classified 
as quadratic space complexity to the size of data. 
The second graph (4-b) represents the running time of our algorithm relative to the number of 
sequences in the dataset. In this case, the algorithm also shows a quadratic behavior where the 
running time increases while the number of sequences increases too. We can observe that in some 
cases, the execution time decreases between two experiments; Despite that, the data in the first 
experiment is larger than in the second one, this is because the number of rules found in the 
second experiment is bigger than the number in the first one, and this makes the time required to 
process this number of rules decreasing in the graph. 
6 Conclusion 
As long as only a few researches have been tackling the uncertainty of databases for improving 
the data mining performance, our proposed method contributed at discovering a new attribute of 
pattern of sequential rules from uncertain databases. Since our employed databases are noisy or 
mislabels, each item belongs every sequence is associated with an existential probability. The 
outcome proposed approach shown a remarkable performance in terms of complexity spatial and 
temporal. 
To our knowledge and until writing these lines, there is no previous work which has considered 
the same problem. Therefore we couldn’t compare our results to similar ones in the same field. 
Our main contribution is to propose a new approach for mining sequential probabilistic rules from 
a probabilistic sequence database, where we explain in details the six steps in our proposition 
illustrated with a running example. 
In the future, we aim to build a probabilistic sequence database which will be used for testing the 
new proposed mining algorithms, and we want to extend our work to cover the case of tuple 
uncertain model explained in this paper. 
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