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Abstract 

In engineering, combinatorial designs are especially important during the parameter design phase. 
With a comparison to Taguchi's designs, we concentrated on constructing and using experimental 
designs using orthogonal arrays of strength three. The methodologies used for constructing the 
designs were highlighted in our case study, which served as an example of the ideas underpinning 
experimental design. 

In this case, the strain-gauge transducer's displacement signal was being measured by means of a 
passive filter network. The filter's transfer function was developed using Kirchhoff's current law, 
and equations were obtained to use in setting the network's descriptor parameters (DP) such that 
it would match the functional requirements. Pole location and filter gain were two functional 
requirements that could not be accomplished without these defining parameters. 

Introduction 
A lot of focus has been placed on the orthogonal design method (ODM). In both theoretical and 
practical situations, this method is examined in the literature. The ODM takes a few of randomly 
chosen locations from a vast search area. After that, a possible excellent answer is summarized 
statistically. Chemical and biological sciences, image processing, laser polishing, software testing 
procedures, algorithms, semiconductor manufacturing, optics, and resilient design are just some 
of the many places this method may be used. Mixed-level orthogonal array research is one 
example of recent theory research on the ODM method. 
The existing practice of designing antennas by hand is limiting in its potential to generate new 
and improved antenna designs since it needs extensive subject expertise and experience, as well 
as being time and labor expensive. An antenna engineer will choose a class of antennas and then 
spend a significant amount of time testing and refining a design, often through simulation using 
electromagnetic modelling software. Evolutionary antenna optimization has been the subject of 
research since the early 1990s. An antenna may be optimized in a number of ways; some common 
ones are particle swarm optimization, differential evolution, and genetic algorithms/evolutionary 
algorithms. 
An evolutionary algorithm often replaces time-consuming electromagnetic simulations 
throughout the antenna design process. Fast computation and imperfect simulation are then 
employed to cut down on execution time. One can only refer to the end outcome of such evolution 
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as a loosely developed antenna. This work is concerned with the local enhancement of rough 
antennas. Before constructing a goal based on the antenna's performance, we first relax its 
geometrical parameters within particular regions. Then, we take a modest number of antenna 
samples over the calmed space to identify a good one. The acronym stands for "orthogonal design 
method." 
Methodology 

In the context of experimental design and optimization, the term "orthogonal" holds distinct 
meanings, depending on the perspective. For an Orthogonal Array (OA), the concept of 
"orthogonal" refers to achieving a particular balance in a combination of factors that remains 
consistent regardless of how the levels of those factors are coded. This balance is crucial for 
experimentation and analysis. When discussing orthogonal columns, the term pertains to a 
geometric form of orthogonality within a multi-dimensional space. This type of orthogonality can 
be quantified by measuring the correlation between columns. If the correlation between two 
columns is zero, they are considered geometrically orthogonal. 

Importantly, combinatorial orthogonality inherently implies geometric orthogonality, meaning 
that when factors are balanced in an OA, they also exhibit the property of geometric 
orthogonality. However, the reverse isn't always true—geometric orthogonality doesn't 
necessarily guarantee combinatorial orthogonality. Geometric orthogonality primarily applies to 
quantitative experimental variables and is heavily influenced by how levels of factors are coded. 

In literature, discussions about Latin Hypercube Designs (LHDs) that possess orthogonal 
columns have taken place. An example of this can be found in Ye's work from 1998. The 
advantage of achieving geometric orthogonality is observed in the context of simple main effect 
linear regression. In such scenarios, the estimated coefficients remain unchanged, whether 
additional columns are included in the model or not. This stability in estimates is a valuable 
property for experimental design. 

Expanding upon the notion, the word "3-orthogonality," as initially proposed by Sitter, Bingham 
and Tang in 2009, represents a heightened level of robustness in the context of orthogonality. 
Within the domain of 3-orthogonal arrays, it is seen that columns possess orthogonal associations 
not only with one another and a fixed column, but also preserve orthogonality with the products 
of pairs of other columns and the squares of other columns. This characteristic guarantees that 
estimations of primary effects remain unaffected by estimations of second-order effects, which 
encompass pairwise column products or squared columns. 

This "3-orthogonality" property is particularly significant because it prevents misleading 
conclusions about main effects when second-order effects are neglected. Additionally, it 
enhances the efficiency of estimating second-order models. To the best of our understanding, 
Ye's work in 1998 was among the earliest instances of proposing 3-orthogonal LHDs. Ye's 
approach generated designs that involved 2k or 2 (k+1) runs, featuring 2k - 2 columns. 
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Figure 1. Enhanced 2D Representations of SOA with Six Orthogonal Columns Levels 

It's important to note that while orthogonality or 3-orthogonality is a useful property, it should 
not be mistaken for ensuring space-filling characteristics. Therefore, it's recommended to 
incorporate additional criteria for space-filling, as the standard constructions can result in 
noticeable patterns that leave significant gaps in coverage. 

For instance, let's take the example of an unoptimized orthogonal design with 125 runs. In this 
scenario, the arrangement of design points might appear in diagonal stripes that run parallel to 
each other. However, this arrangement doesn't effectively fill the space as desired. To address 
this, even a single round of optimization aimed at reducing the value of φp (a specific metric) can 
lead to a significant improvement in this behavior. This improvement is visually evident when 
observing the 2D projections shown in Figure 1, and by comparing the φp values. The value of 
φp is reduced from 0.0395 to 0.013 through the optimization process. 

Nevertheless, it's important to highlight that the figure on the right-hand side also highlights the 
presence of systematic gaps in several of the projections. This indicates that while optimization 
can enhance the space-filling characteristics, it might not completely eliminate all the gaps in 
coverage. This underlines the need for a balanced approach that considers both orthogonality and 
additional criteria to ensure effective space filling and minimize patterns that leave areas unfilled. 

In addition to performing a comparison with Taguchi's designs, our major focus was on 
constructing and applying experimental designs using the orthogonal array technique. 
Combinatorial designs, particularly those used in engineering design, and more specifically 
parameter design, were the focus of our study. 

To kick off our investigation, we provided a case study as background material. To further clarify 
the concept of experimental design, this case study was used as an example. We wanted to 
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demonstrate the technique we used to create the experimental designs and the thinking behind 
our decisions through this case study. 

The displacement signal from a strain-gauge transducer is measured using a passive filter network 
design. The filter is designed to remove the carrier frequency from the signal in order to improve 
its quality. Two functional requirements (FR) must be met: FR1 calls for the filter pole to be set 
at 6.84 Hz to reduce output distortion, and FR2 calls for the filter gain to be adjusted to achieve 
full-scale beam detection at a distance of 3 in. 

In order to meet the functional requirements, it is necessary to ascertain the appropriate set of 
descriptor parameters (DP) or control variables for the passive filter network. The calculation of 
the filter's transfer function in the given extract lacks the inclusion of the Kirchhoff current law. 
To begin the design methodology, it is necessary to first derive the transfer function. 

Let: 

 Let V_in be the input voltage (signal from strain-gauge transducer). 
 Let V_out be the output voltage (filtered signal). 
 Let s be the complex frequency variable (s = σ + jω, where σ is the real part and j is the 

imaginary unit). 

The transfer function of the passive filter network can be represented as H(s) = V_out / V_in. 

Now, let's proceed to derive the transfer function using the Kirchhoff current law and the 
information given in the excerpt. 

Assumptions: 

 The passive filter network is a simple first-order high-pass filter. 
 The filter contains a resistor (R) and a capacitor (C). 

The Kirchhoff current law at the input node of the filter gives us the following equation: (V_in - 
V_R) / R + (V_in - V_C) / Z_C = 0 

Where: 

 V_R is the voltage across the resistor R. 
 V_C is the voltage across the capacitor C. 
 Z_C is the impedance of the capacitor, given by Z_C = 1 / (jωC). 

Equation in terms of V_out and V_in: 
(V_in - V_out) / R + (V_in - V_out) / Z_C = 0 
Next, let's solve for V_out / V_in to find the transfer function H(s): 
(V_in - V_out) / R + (V_in - V_out) / (1 / (jωC)) = 0 
Now, let's simplify the equation: 
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(V_in - V_out) / R + jωC (V_in - V_out) = 0 
Now, factor out (V_in - V_out): 
(V_in - V_out) * (1 / R + jωC) = 0 
Divide both sides by (1 / R + jωC): 
V_out / V_in = 1 / (1 / R + jωC) 
To meet the functional requirement FR1, we need to set the pole of the filter at 6.84 Hz. The pole 
of a first-order high-pass filter is given by the reciprocal of the product of the resistor and 
capacitor values (RC): 
Pole = 1 / (RC) 
We want the pole to be at 6.84 Hz: 
6.84 = 1 / (RC) 
To meet the functional requirement FR2, we need to adjust the filter  
Gain = R 
Now, we have two equations to determine the values of R and C: 
6.84 = 1 / (RC) 
Gain = R = ±3 in 
Solving these two equations will give us the values of R and C for the passive filter network. 

𝑉

𝑉
=

𝑅 𝑅

𝑅 + 𝑅 (𝑅 + 𝑅 ) + 𝑅 𝑅 + 𝑅 + 𝑅 𝑅 𝑅 𝐶
 

𝜔 =
𝑅 + 𝑅 (𝑅 + 𝑅 ) + 𝑅 𝑅

2𝜋 𝑅 + 𝑅 𝑅 𝑅 𝐶

𝐷 =
|𝑉 |

𝐺sen 
=

|𝑉 |𝑅 𝑅

𝐺sen 𝑅 + 𝑅 (𝑅 + 𝑅 ) + 𝑅 𝑅

 

 
Figure 1. A passive filter network 

 
𝐸(𝜇 ) = (𝑛𝑚 − 𝑉)/𝑛 

𝐸(𝜎 ) = 𝑉 =  𝑦 − 𝑆 /(𝑛 − 1) 

where 𝑆 = (∑𝑦) /𝑛. 
 

The SN ratio is given by: 
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𝜂 = 10log  𝐸(𝜇 /𝜎 ) = 10log  ⌈(𝑆 − 𝑉)/𝑛𝑉⌉ 

𝜔 = {𝜔 ∣ 𝑔 ∈ 𝐺} 

Stab (𝜔) = {𝑔 ∈ 𝐺 ∣ 𝜔 = 𝜔} 

There is an action homomorphism ϕ: G S → Ω. The procedure involves computing orbits and 
stabilizers, finding representative arrays for each orbit, testing whether or not two arrays in belong 
to the same orbit (homomorphism), and storing the representative arrays together with the 
automorphism group size. 

The backtrack search technique is employed to systematically search for permutations that satisfy 
particular requirements for orthogonal arrays, which are combinatorial arrays. Until all solutions 
are identified or a predetermined condition (of strength three) is violated, the backtrack search 
method iteratively enumerates vectors (rows) in lexicographic order, constructing arrays. 

The method involves first encoding the array as a colored graph, then decoding it to a fraction 
after the canonical labeling graph has been found. Instead of comparing the matching arrays, this 
method checks for isomorphism between the colored graphs. 

The steps involved in this method are as follows: first, an array is translated into a colored graph; 
second, the canonical graph of the colored graph is located; and third, the array is demerged from 
the canonical graph. 

Result 

When compared to Taguchi's method, our approach stood out for how easily it could be 
implemented. Our designs also had the distinct quality of being extensible, which meant that other 
combinations of factor levels could be used within the same design. 

However, some of the supplementary discoveries and difficulties we faced during our research 
deserve mention. First, we discovered that, beyond Hedayat's method and the alternatives offered 
by Schoen, Murray, and Man, there is scant information concerning computational techniques for 
constructing orthogonal arrays (the combinatorial form). Existing techniques rely on backtrack 
search, which has its own set of limitations. 

Second, we intend to evaluate the performance of mixed arrays design, which looks to be a strong 
competitor in this sector, in order to provide a thorough review. 

We have pinpointed certain crucial areas for enhancement in order to overcome some anticipated 
drawbacks and limitations of our designs. These include deciding which interactions to measure, 
finding representative elements inside each orbit, figuring out the size of the arrays, selecting an 
appropriate design within non-isomorphic arrays, and making sure there is enough computational 
capacity to execute the algorithms efficiently. 
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Conclusion 

In conclusion, our study successfully explored the construction and application of experimental 
designs using orthogonal arrays in parameter design. Our innovative approach showed promising 
results, offering advantages in flexibility and simplicity of implementation. However, further 
research and refinement are necessary to overcome existing limitations and fully realize the 
potential of combinatorial designs in engineering applications. Overall, this study contributes 
valuable insights to the field of experimental design and opens avenues for future advancements 
in combinatorial design techniques. 
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