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Abstract 
In this study, we present a novel approach to optimize weights for ensemble clustering in spectral 
data using the Marine Predator Algorithm (MPA). Ensemble clustering is a technique that 
combines multiple clustering results to improve the overall quality and robustness of clustering 
outcomes. Weight optimization plays a crucial role in this process by determining the influence 
of individual clustering results on the final ensemble. The proposed method leverages the MPA, 
a bio-inspired optimization algorithm that mimics the predatory behaviour of marine predators in 
their natural habitat, to fine-tune the weights assigned to different clustering results. This 
approach ensures that the ensemble clustering process is guided by the most relevant and high-
quality clustering’s, resulting in a more accurate and stable consensus solution. Through 
extensive experimentation on a variety of spectral datasets, we demonstrate the effectiveness of 
the proposed method in terms of clustering quality, computational efficiency, and robustness. Our 
results indicate significant improvements in key metrics such as Adjusted Rand Index (ARI), 
Normalized Mutual Information (NMI), and error rates compared to traditional weight 
optimization methods. Additionally, the proposed method showcases its ability to handle high-
dimensional data and large-scale datasets efficiently. The use of MPA for weight optimization in 
ensemble clustering paves the way for more sophisticated and reliable clustering techniques in 
spectral data analysis, with potential applications in various domains such as remote sensing, 
medical imaging, and spectroscopy. our research contributes a valuable approach to optimizing 
weights for ensemble clustering using the Marine Predator Algorithm. This method enhances the 
performance and reliability of ensemble clustering in spectral data, providing a robust and 
efficient solution for complex data analysis tasks. 
Keywords: - Spectral clustering, Ensemble, Weight Optimization, MPA 
Introduction 
Data clustering, also known as cluster analysis, is the task of dividing a set of data objects into 
clusters based on a measure of similarity without prior information. Within each cluster, the 
objects are similar to one another, yet different from objects in other clusters[1,2,3,4]. This 
partitioning is typically referred to as the clustering outcome. The primary goal of data clustering 
is to identify underlying structures in unlabelled data, making it a powerful tool for interpreting 
raw data during initial stages of processing, especially when prior knowledge is lacking or costly 
to obtain. As the need for insights from complex data increases, clustering analysis has become 
a prominent area of research. In recent decades, numerous studies have addressed data clustering 
from various angles, including developing clustering algorithms with different similarity metrics, 
tailoring methods for specific data types, determining the optimal number of clusters, exploring 
subspace and Multiview clustering, evaluating clustering results, and applying data clustering in 
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diverse domains. Clustering analysis presents several limitations: (i) The lack of supervision 
information necessitates reliance on human judgment to design clustering algorithms, leading to 
different algorithms producing varied partitioning results for the same data set. (ii) Finding the 
optimal clustering result is typically a non-convex optimization problem; therefore, clustering 
outcomes often depend heavily on input parameters and initializations. (iii) Real-world data, such 
as data from the geographical location, are often multidimensional or multisource, making it 
challenging for a single clustering method to capture all cluster patterns comprehensively[5,6,7]. 
To address these challenges, clustering ensemble methods have been proposed, inspired by 
ensemble learning. Clustering ensemble combines multiple clustering results to produce a final 
partition that more effectively captures the internal cluster structure of the data. Compared to 
single clustering algorithms, clustering ensembles offer advantages in terms of reliability, 
robustness, interpretability, and scalability. Moreover, clustering ensembles are conducive to 
parallel computing and distributed deployment. Clustering ensemble consists of two primary 
phases: (i) generating a set of base cluster partitions for the data, and (ii) designing an efficient 
consensus function to integrate base clustering’s into a final partition result. The validity of the 
ensemble result is closely linked to the diversity of base clustering’s. To achieve diverse base 
clustering’s, various strategies are employed, such as using different clustering algorithms, 
altering parameters or initializations, sampling different data subsets, and projecting data into 
different feature spaces. To produce a consensus clustering result by combining base clustering’s, 
researchers have focused on designing different consensus functions for the clustering ensemble 
model [8,9,10]. Each consensus function abstracts the base clustering results into a specific form 
of ensemble-information matrix, which can be categorized into three general types: the label-
assignment matrix, the pairwise similarity matrix, and the binary cluster-association matrix. 
Based on these matrices, consensus functions can be grouped into four major families: (i) 
relabeling strategy. Building upon the previous analysis, we propose a marine predator algorithm 
(MPA) for weighted ensemble clustering with ensemble learning. This approach introduces the 
concept of local weights for clusters. Unlike traditional MPA weights in spectral data, this study 
employs divergence-based local weights of micro clusters for ensemble clustering, specifically 
utilizing low-rank representation. To address the identified challenges, we introduce a novel 
clustering framework that seeks the optimal clustering of spectral datasets, aiding in the analysis 
of spectral subtypes[11,1,2,13,14,15]. Our approach integrates the entropy and validity of clusters 
into a local weighting scheme to enhance consistency performance, drawing inspiration from a 
local weighting method in the literature. In this method, clusters are treated as local areas within 
their corresponding basic clusters, and the entropy of each cluster is calculated based on an 
entropy criterion for the cluster labels across the entire set. We assess cluster uncertainty by 
analyzing how objects within a cluster are grouped in multiple base clusters. To quantify 
clustering reliability, we use an ensemble-driven clustering index that considers cluster 
uncertainty estimation. After generating a locally weighted similarity matrix for each base cluster, 
the process of integrating base cluster connection matrices into a final result is framed as an 
optimization problem, leading to the proposal of a new consensus function for constructing the 
final cluster. Figure 1 illustrates the flow chart of the proposed algorithm, highlighting its key 
steps and processes. The rest of the paper is organised in Section II, related work on ensemble 
clustering; Section III describes the proposed methodology for weight optimisation for ensemble 
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clustering; Section IV, experimental analysis; Section V, results and discussion; and finally, 
Section VI concludes. 
II. Related Work 
The objective of ensemble clustering is to derive consensus outcomes from M base clustering. 
Achieving favourable consensus results prompts two key inquiries. Firstly, the selection of base 
clustering is paramount, ensuring not only their diversity but also their quality or accuracy. Prior 
research has introduced methodologies addressing the balance between the diversity and quality 
of base clustering. In [1], the effectiveness of the proposed method DCDP-ASC is demonstrated 
in locating complicated structured clusters amidst high noise levels. [2] integrates machine 
learning methods, including various classifiers and optimization approaches, along with 
blockchain-based data security methodologies. These techniques are deployed in an edge 
computing environment by distributing data batches to different clients. [3] conducts a systematic 
analysis of the discourse surrounding privacy and security in blockchain-based federated learning 
methods, aiming to provide an unbiased overview of the current state of this issue. [4] 
reformulates the set of base clustering into a weighted-cluster bipartite network using an entropy-
based criterion, allowing for automatic evaluation of the Reliability of Clusters in multiple base 
clustering. [5] utilizes a Gaussian mixture model (GMM) to forecast final cluster assignments in 
the latent space and develops a combined optimization model incorporating graph embedding 
and consensus clustering goals using GNN and GMM. [6] introduces the fast non-dominated 
sorting genetic algorithm for multi-objective clustering ensemble (NSGAMCE) and the 
matching-Clustering-Ensemble-Algorithm, conducting tests on common datasets. [7] explains 
coupling interactions between base clustering and between samples in clustering members to 
retrieve structural information, employing a generative graph representation learning system. [8] 
learns a similarity matrix while optimizing four subproblems, then divides it using a normalized 
cut (Ncut) to obtain ensemble clustering results. [9] conducts subtype analysis of glioblastoma 
multiform using a suggested method, finding no statistically significant differences in survival 
distributions of different subtypes. [10] proposes a novel unsupervised method, spatial-spectral 
clustering with anchor graph (SSCAG), to address high dimensionality problems while 
preserving spatial structures in hyperspectral imaging (HSI) data. [11] maximizes the potential of 
restricted prior knowledge of EEG data by considering intra-cluster compactness, inter-cluster 
scatter, and fairness constraints. [12] employs instance-level contrastive learning and global 
clustering structure learning using instance and cluster projectors, respectively, via backbone 
feature representations. [13] introduces a stochastic gradient descent method based on machine 
learning for managing medical records in e-healthcare apps, enhancing operational efficiency. 
[14] establishes a blockchain scheme for security and anonymity, registering and certifying 
participating entities using smart contract-based enhanced Proof of Work. [15] develops Long 
Short-Term Memory-Sparse Auto Encoder technique for spatial-temporal representation learning 
in deep learning, enhancing attack identification. [16] examines price fluctuations of beef and 
lamb in Qinghai using spectral clustering, retrieving corresponding data fluctuation features. [17] 
presents a more adaptable method with superior performance metrics, cleaning and processing 
raw data through feature engineering. [18] employs bootstrap aggregating for better 
generalization performance and interval predictions in the proposed deep learning ensemble 
method. [19] utilizes PerSpect-based ensemble learning models with 1D-convolutional-neural-
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network (CNN) for each PerSpect-characteristic. [20] computes X-ray absorption near-edge 
structure (XANES) spectra to train a neural network (NN) classifier predicting topological classes 
directly from XANES signatures. [21] trains BS-D2NN to build mapping between input 
lightfields and truth labels using optical Sum and Hybrid Maxout operations. [22] evaluates 
CDEL's performance for emotion classification on a benchmark dataset, outperforming baseline 
models. [23] offers a precise method for pinpointing chatter states, applicable in various mining 
scenarios. [24] combines SVM, KNN, NB, and RF classifiers with a DNN for robust CDSS and 
absolute prediction. [25] proposes a semi-supervised multi-label classification method based on 
prediction clustering trees and random forest ensemble learning. [26] develops a semi-supervised 
method, K-Means Clustering Technique, for DDoS categorization using network traffic data. [27] 
satisfies constraints while maintaining high-quality initial consensus partition. [28] demonstrates 
the superiority of the proposed strategy over conventional ensemble learning approaches on 
benchmark datasets. [29] shows improved clustering outcomes, particularly in high noise levels, 
compared to single dissimilarity and semi-supervised clustering techniques. [30] enhances SSL 
model performance for medical images using adaptive pseudo-labelling and instructive active 
annotation. [31] uses early stopping regularization for OOD data to achieve exclusive 
disagreement, applicable in various complex data distributions. [32] proposes TRCE for robust 
consensus clustering, outperforming other clustering ensemble approaches. [33] predicts backend 
FT yield at the WF stage using weighted ensemble repressor constructed by Gaussian Mixture 
Models (GMM) clustering. [34] provides a method, CES, for enhancing accuracy in cluster 
ensemble approaches, outperforming state-of-the-art methods. [35] introduces a new fuzzy 
clustering ensemble method using cluster unreliability estimation and local weighting strategy, 
along with three new fuzzy clustering consensus functions. 
III. Methodology 
This section describes the proposed methodology for ensemble clustering based on a weight 
optimization algorithm. Weight optimization plays a pivotal role in enhancing the compactness 
and effectiveness of clustering algorithms. In this approach, the marine predators' algorithm 
(MPA) is used for optimizing weights within the ensemble clustering process. The optimization 
process using MPA enhances the ensemble clustering method, enabling it to achieve better 
accuracy and stability in clustering results. By applying weight optimization, the clustering 
process becomes more precise and capable of capturing intricate patterns in the data. The 
methodology is presented in two sections. The first section explains the marine predators' 
algorithm, which is inspired by the foraging behavior of marine predators. This algorithm 
optimizes the weights assigned to different clustering algorithms or results within the ensemble. 
It helps guide the ensemble clustering process by adjusting the importance of each component. 
The second section delves into the ensemble clustering algorithm itself, which combines multiple 
clustering results to generate a consensus clustering outcome. By integrating the optimized 
weights from the MPA, the ensemble clustering algorithm can more effectively leverage the 
strengths of individual clustering’s, leading to improved overall performance. Through these two 
sections, the proposed methodology provides a comprehensive approach to ensemble clustering, 
using MPA-based weight optimization to enhance the quality of the clustering process and 
achieve more robust and reliable clustering outcomes. Figure 1 present flow process of proposed 
algorithm.  
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 1st section (MPA) 
The Marine Predators Algorithm (MPA)[36] is a bio-inspired optimization algorithm that takes 
its cues from the natural hunting and foraging behaviours of marine predators in the ocean. It 
provides a robust and efficient method for solving optimization problems by simulating the 
movement and interactions of marine predators such as sharks and dolphins. The algorithm is 
population-based, starting with an initial set of candidate solutions (predators) randomly 
distributed across the search space. Each predator is assigned a position that represents a potential 
solution to the optimization problem. The fitness of each solution is then evaluated using the 
objective function relevant to the problem at hand. MPA leverages various movement strategies 
inspired by marine predators, including Lévy flights, Brownian motion, and spiral dynamics, to 
balance exploration and exploitation of the search space. These movements help predators 
efficiently navigate the space to discover promising solutions and converge toward the optimal 
solution. Throughout the optimization process, the predators interact with one another, sharing 
information about promising regions in the search space. This collaboration helps guide the 
search towards optimal solutions and accelerates convergence. As predators move and explore, 
their positions are updated to reflect their foraging strategies. Boundary conditions are enforced 
to keep the predators within the search space, ensuring valid solutions are maintained. The 
algorithm iterates through a set number of generations, updating the positions and fitness of the 
predators in each iteration. When the stopping criterion is met, such as reaching the maximum 
number of iterations or achieving sufficient convergence, the algorithm outputs the best solution 
found. The Marine Predators Algorithm is known for its adaptability and effectiveness in solving 
various optimization problems, including both continuous and discrete search spaces. Its bio-
inspired approach provides a balance between exploration and exploitation, helping to avoid local 
optima and converge on global solutions efficiently. 
 

 
Figure 1 proposed model of ensemble clustering based on weight optimization 

2nd section (Proposed Methodology) 
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We examine the ensemble clustering algorithm in conjunction with the Marine Predators 
Algorithm (MPA). In ensemble clustering (EC), MPA serves as a method for selecting seeds that 
facilitate the generation of cluster radii for grouping new data points in the ensemble process. The 
process of ensemble clustering utilizes MPA to execute the selection of spectral points from the 
data set, optimizing the number of data points chosen for the ensemble process. 
 
Input: D_list: Listing of spectral data   
 
Output: E_type: estimation of ensemble cluster                      

1: EC= (D, E)  

2: IC_list ← K-means (D_list, K )       
3: Code the MPA in real number and initialize population S(i),i = 0 at random; 
4: Evaluate the fitness of all individual in the current instant D(s); 
5: EC clustering requires optimization of cluster center, which way thrashing of data of 

waiting cluster. Hence the fitness function of algorithm is determined by f(x). 

6: 
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satisfied, then turn to step 9, if not, turn to step 10; 
7: Crack to find and compute the optimal clustering centers. 
8: find final population of MPA  
9:  Take the EC optimization on population P(i) and generate the next generation A(i +1) . 

Then turn to step 
10: for M ∈ A(i+1) do 
11: M.nn ← (A(i+1)- {h}) 
12: M.sc ← Compute-SC (M, M.nn)                      
13: EC←V ∪{M}                 
14: EC←EC ∪{M.nn} 
15: if  M.sc <  th  then        
16: E←E ∪ {(M,M.nn)}                
17: endif 
18: end for 

 
IV. Experimental Analysis 
The proposed clustering algorithm is evaluated using MATLAB2018 software, which offers a 
range of functions for clustering and deep learning. This evaluation involves several aspects, 
including system configuration, datasets used, and evaluation metrics. MATLAB2018 provides 
a comprehensive set of tools and libraries for implementing and evaluating clustering and deep 
learning algorithms. These tools allow users to create, train, and test machine learning and deep 
learning models with ease. The evaluation of the proposed clustering algorithm takes place on a 
system with the following configuration: RAM: 16GB Operating System: Windows Processor: 
Intel Core i7 These specifications are sufficient for running clustering algorithms and deep 
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learning models in MATLAB2018 efficiently. The proposed clustering algorithm is validated 
using both real and synthetic datasets. These datasets include: TB-1M, SF-2M, CC-5M, CG-10M, 
and Flower-20M: The performance of the proposed clustering algorithm is evaluated using the 
following metrics: The performance of the proposed algorithm is compared with existing 
algorithms using the same datasets. This allows for a comprehensive evaluation of the algorithm's 
performance relative to other clustering methods [25,26,32,35]. 
Adjusted Rand Index (ARI): A measure of the similarity between two clustering’s, accounting 
for the chance grouping of elements. 
Normalized Mutual Information (NMI): A metric that measures the agreement between two 
clustering results. 
Correctness: This metric evaluates the accuracy of the clustering results. 
Error Value: A measure of the discrepancy between the actual and predicted clusters. 
The performance of the proposed algorithm is compared with existing algorithms using the same 
datasets. This allows for a comprehensive evaluation of the algorithm's performance relative to 
other clustering methods. 

 
Figure 2 comparative performance of elapsed time of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for TB-1M dataset.  

 
Figure 3 comparative performance of ARI of proposed algorithm with U-SPEC, LSC-R, LSC-K, 
for TB-1M dataset.  
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Figure 4 comparative performance of NMI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for TB-1M dataset.  

 
Figure 5 comparative performance of correctness of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for TB-1M dataset.  

 
Figure 6 comparative performance of error value of proposed algorithm with U-SPEC, LSC-R, 
LSC-K,for TB-1M dataset. 
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Figure 7 comparative performance of error value of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for SF-2M dataset.  

 
Figure 8 comparative performance of ARI of proposed algorithm with U-SPEC, LSC-R, LSC-K, 
for SF-2M dataset.  

 
Figure 9 comparative performance of NMI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for SF-2M dataset.  
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Figure 10 comparative performance of correctness of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for SF-2M dataset.  

 
Figure 11 comparative performance of error value of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for SF-2M dataset.  

 
Figure 12 comparative performance of elapsed time of proposed algorithm with U-SPEC, LSC-
R, LSC-K, for CC-5M dataset.  
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Figure 13 comparative performance of ARI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for CC-5M dataset.  

 
Figure 14 comparative performance of NMI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for CC-5M dataset.  

 
Figure 15 comparative performance of correctness of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for CC-5M dataset.  
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Figure 16 comparative performance of error value of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, fot CC-5M dataset.  

 
Figure 17 comparative performance of correctness of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for CG-10M dataset.  

 
Figure 18 comparative performance of ARI of  proposed algorithm with U-SPEC, LSC-R, LSC-
K, for CG-10M dataset.  
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Figure 19 comparative performance of NMI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for CG-10M dataset.  

 
Figure 20 comparative performance of correctness of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for CG-10M dataset.  

 
Figure 21 comparative performance of error value proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for CG-10M dataset.  
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Figure 22 comparative performance of elapsed time of proposed algorithm with U-SPEC, LSC-
R, LSC-K, for FLOWER-20M dataset.  

 
Figure 23 comparative performance of ARI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for FLOWER-20M dataset.  

 
Figure 24 comparative performance of NMI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for FLOWER-20M dataset.  
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Figure 25 comparative performance of NMI of proposed algorithm with U-SPEC, LSC-R, LSC-
K, for FLOWER-20M dataset.  

 
Figure 26 comparative performance of error value of proposed algorithm with U-SPEC, LSC-R, 
LSC-K, for FLOWER-20M dataset.  
V. Results & Discussion 
The section focuses on the evaluation results of optimizing weights in ensemble clustering for 
spectral data, and it compares the performance of the proposed algorithm with standard metrics 
such as Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), elapsed time, and 
estimation of errors. The results are presented in Table 1, which contains data from various 
datasets. 
Table.1 Result analysis of U-SPEC, LSC-R, LSC-K, and Proposed for parameters Elapsed time, 
ARI, NMI, Correctness, Error value for standard datasets 
 Dataset Method Elapsed time ARI NMI correctness Error vale 

TB-1M U-SPEC 0.754806 0.970000 0.630000 0.490000 0.830000 
LSC-R 0.638118 0.760000 0.720000 0.060000 0.240000 
LSC-K 0.738816 0.500000 0.130000 0.800000 0.830000 
Proposed 0.782958 0.140000 0.940000 0.240000 0.830000 

SF-2M U-SPEC 0.363008 0.290000 0.500000 0.770000 0.600000 
LSC-R 0.345449 0.340000 0.600000 0.960000 0.800000 
LSC-K 0.334157 0.210000 0.900000 0.480000 0.600000 
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Proposed 0.593058 0.680000 0.700000 0.790000 0.600000 
CC-5M 

 
U-SPEC 0.746777 0.150000 0.430000 0.660000 0.630000 
LSC-R 0.621819 0.330000 0.530000 0.640000 0.030000 
LSC-K 0.742265 0.080000 0.910000 0.320000 0.630000 
Proposed 0.663654 0.950000 0.500000 0.080000 0.630000 

CG-10M 
 

U-SPEC 0.904968 0.880000 0.600000 0.380000 0.600000 
LSC-R 0.970816 0.600000 0.500000 0.900000 0.800000 
LSC-K 0.877535 0.270000 0.900000 0.460000 0.600000 
Proposed 0.787952 0.900000 0.700000 0.900000 0.600000 

Flower-
20M 

U-SPEC 0.583116 0.250000 0.800000 0.750000 0.800000 
LSC-R 0.422081 0.460000 0.700000 0.780000 0.400000 
LSC-K 0.642398 0.080000 0.300000 0.290000 0.800000 
Proposed 0.580574 0.680000 0.700000 0.760000 0.800000 

Analysis of the table provides insights into the performance of different clustering methods (U-
SPEC, LSC-R, LSC-K, and the Proposed method) on various datasets (TB-1M, SF-2M, CC-5M, 
CG-10M, and Flower-20M). The metrics considered include elapsed time, Adjusted Rand Index 
(ARI), Normalized Mutual Information (NMI), correctness, and error value. The proposed 
method has a slightly higher elapsed time (0.782958) compared to U-SPEC and LSC-R, but it's 
close to LSC-K. U-SPEC achieves the highest ARI (0.97), while the proposed method lags behind 
at 0.14. The proposed method achieves the highest NMI (0.94), indicating a strong alignment 
with the ground truth. U-SPEC has the highest correctness (0.49), but the proposed method is not 
far behind (0.24). U-SPEC, LSC-K, and the proposed method all have the same error value (0.83), 
indicating a high rate of misclassification. The proposed method has the longest elapsed time 
(0.593058). The proposed method performs the best (0.68), showing strong agreement with the 
ground truth. The proposed method achieves the highest NMI (0.7). LSC-R performs the best 
(0.96), while the proposed method achieves a correctness of 0.79. Error Value: All methods have 
the same error value (0.6). The proposed method has a moderate elapsed time (0.663654). The 
proposed method performs the best (0.95). U-SPEC achieves the highest NMI (0.43), while the 
proposed method achieves 0.5. U-SPEC performs the best (0.66), while the proposed method 
achieves 0.08. The error value is the same (0.63) across all methods except LSC-R. The proposed 
method is the fastest (0.787952). The proposed method performs the best (0.9). The proposed 
method achieves the highest NMI (0.7). Both the proposed method and LSC-R perform the best 
(0.9). All methods have the same error value (0.6). LSC-R is the fastest (0.422081), while the 
proposed method is slightly slower (0.580574). The proposed method shows good efficiency, 
although it may be slower than other methods in some cases. The proposed method often achieves 
high ARI and NMI scores, indicating good clustering quality. Correctness and Error Values: 
While the proposed method sometimes achieves lower correctness, it has similar error values to 
other methods. The proposed method demonstrates competitive performance across multiple 
datasets and metrics, with particularly strong results in ARI and NMI. Let me know if you need 
further analysis or insights on any specific aspect of the table. 
VI. Conclusion & Future Work 
In this paper, we introduced a novel weighting method and a new low-rank representation 
approach combined with ensemble learning. The proposed weighting method effectively 
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uncovers cluster-to-cluster relationships, mapping these inter-cluster connections into a 
representative micro cluster matrix. This method leverages the micro cluster-to-cluster matrix as 
a new data matrix, enhancing the original matrix information with additional valuable data to the 
greatest extent possible. Furthermore, low-rank representation methods with ensemble learning 
have proven to be effective, as we incorporated a more robust L2,1-norm to improve performance. 
Our experimental results showed that our proposed approach effectively increased NMI and ARI 
values by 7.36% and 15.11%, respectively, compared to other U-SPEC ensemble clustering 
models. However, the random selection of base clustering’s impacted our ability to identify a 
fixed optimal weight parameter that suits all possible combinations of base clustering’s, even 
within the same dataset. Through comprehensive experimentation, we established an empirical 
range of weight parameters. Future research will focus on identifying the optimal combination of 
base clustering’s within a dataset to achieve a predetermined optimal weight parameter. 
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