
ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

 

 
 
 
 

 
569  

DEEP LEARNING TECHNIQUES TO ENHANCE ENERGY EFFICIENCY OF HOME 
APPLIANCES BY ANALYSING AIR QUALITY LEVELS 

 
Jasbir Singh Saini1, Dr. Sunny Arora2, Dr. Sushil Kamboj3 

 
1Research Scholrar, Deptt. of CSE,Guru Kashi University, Talwandi Sabo, Bathinda 

sainijassbir@gmail.com 
 

2Professor, Deptt. of CSE Guru Kashi University Talwandi Sabo, Bathinda 
sunnyarora@gku.ac.in 

 
3Professor Deptt.of IT CGC, Landran Chandigarh dr.sushilkamboj@gmail.com 

 
ABSTACT:  

Energy efficiency in home appliances is a critical area of research that addresses the 
growing demand for reducing energy consumption. The rapid growth in artificial 
intelligence has prioritized the development of advanced methods to improve 
sustainable energy consumption, particularly by optimizing the energy efficiency of 
home appliances. This paper introduces a novel deep learning-based framework to 
enhance energy efficiency in home appliances by leveraging insights from indoor air 
quality (IAQ) metrics. Unlike conventional energy management approaches that face 
challenges such as limited datasets, computational inefficiencies, and lack of 
generalizability, this research incorporates advanced preprocessing and 
augmentation techniques. Specifically, a hybrid SMOTE-ENN approach addresses 
class imbalance, while Z-score normalization ensures consistent feature scaling. 
Among the evaluated models, Bidirectional GRU and Stacked LSTM stand out, 
achieving exceptional validation accuracies of 99.81% and 99.64%, respectively, 
demonstrating superior generalization. This framework uniquely integrates indoor 
air quality data to optimize energy usage dynamically, showcasing how 
environmental factors such as CO2, humidity, and temperature can inform 
sustainable energy practices. These findings underscore the transformative potential 
of deep learning in fostering eco-friendly innovations for smart home energy 
management. 
Keywords: Home appliances, Energy efficiency, Deep Learning, Sustainable Living, 
SMOTE- ENN, Z-Score 
INTRODUCTION 
Since the era of 21st century has started, the world has experienced a very strong 
growth in the field of global energy consumption in almost all the regions. It has been 
analysed that the consumption of energy often increases because of the factors like 
economic growth, expansion of demographic and higher usage of electricity per 
capita [1]. Optimizing the efficiency of household appliances plays a crucial role to 
mitigate this rise in energy demand because of its contribution of over 30% by the 
residential consumers in certain nations. It also addresses both the economic and 
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environmental impacts of rising energy consumption which signifies the importance 
of sustainable practices in residential energy management [2]. Moreover, such 
improvements also contribute in the reduction of pollution along with the individual 
contributions to climate change. In fact, an energy-efficient home integrates some 
advanced technologies and designs which lessens the using up of energy as well as 
maintains the same level of safety, convenience, comfort, and visual attractiveness as 
traditional homes [3]. Figure 1 displays the percent of energy consumed by the home 
appliances. 

 
 

 
Figure 1: Energy contributions by different home appliances to highlight their share in 

total residential energy consumption [31] 
 
Globally, policies aimed at enhancing energy efficiency provide significant benefits 
to both energy suppliers and consumers, yielding environmental, social, and 
economic advantages. Efficient energy use is essential for strengthening energy 
supply amid rising demand and economic expansion. This includes advancements in 
energy management to mitigate peak energy demands, optimize household appliance 
usage, and develop increasingly efficient appliances [4]. Particular importance is 
placed on improving the efficiency of heating and cooling systems, which constitute 
significant energy loads within residential settings. The Air Quality Index (AQI) also 
serves as an important metric to optimize the performance and energy efficiency of 
household appliances. Increased levels of pollutants like dust can affect the 
effectiveness of air purifier and fans which requires adjustments to maintain optimal 
indoor air quality. Similarly, higher CO2 levels, indicative of increased occupancy, 
may require optimal use of heating, ventilation, and lighting systems for efficient 
operation [5]. Analyzing past indoor air quality index data enables to identify the 
patterns and correlations, which facilitate the personalized recommendations to 
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optimize appliance performance by considering air quality conditions. Thus, using 
an indoor air quality index will help us to predict how our appliances will perform 
and aid us to plan ahead to keep them working efficiently in different indoor 
conditions [6]. 

 
There are various conventional techniques to enhance energy efficiency of home 
appliances which involve implementation of energy-efficiency standards, 
improvement of appliance design, and promotion of energy-efficient technologies. 
However, these methods also face challenges in terms of complexity of appliance 
design, resistance to standards and regulations from manufacturers, and the influence 
of consumer behaviour [7]. To address this, deep learning provides a promising 
solution by optimizing appliance design through data-driven insights. Apart from 
this, deep learning algorithms can identify correlations and patterns by analyzing 
large datasets on appliance performance, energy consumption, and IAQ that 
traditional methods may overlook. This enables the development of more efficient 
appliance designs that not only save energy but also contribute to improved IAQ [8]. 

 
There are various studies which have shown their contribution in the energy 
efficiency of home appliances using machine and deep learning techniques. [9] 
Proposed an Artificial Intelligence-based Energy Management Model for green 
buildings in order to prioritize comfort and safety of user along with the energy 
efficiency. They used universal infrared communication system and LSTM model for 
optimizing the energy consumption and emphasized HVAC system airside design 
optimization to display economic and environmental benefits. Green buildings 
benefit from the AI-EMM computed high- performance ratio of 94.3%, reduced 
energy consumption of 15.7% , accuracy (97.4%), energy management level 
(95.7%), and prediction accuracy (97.1%). [10] used correlation analysis to collect 
the data to discard redundant sensors and focused to optimize IoT system design for 
smart homes. They used data analysis and prediction technique to enhance energy 
efficiency by correlating heterogeneous IoT sensor data and proposed a machine 
learning- based intelligent service model which was evaluated using RMSE. The 
results indicated that the gradient-boosting regressor was the most effective by 
achieving 22.29 as RMSE. Besides this, various architectures of deep recurrent neural 
networks (DRNNs) are explored those are tailored for medium- and long-term energy 
demand predictions, specifically for heating and electricity consumption at a 1-hour 
resolution. Their proposed DRNN model surpassed support vector machine (SVM) 
and gradient boosting (GB) regression models by 5.4% and 7.0%, respectively by 
showcasing its superior performance in energy forecasting accuracy. a novel model 
is proposed which consisted of three components i.e. smoothing which employed 
Kalman filter for eliminating the noise from data, optimization to minimize the cost 
error in real time data by using firefly and genetic algorithms, and control to manage 
distribution of energy for lightning, temperature etc. [12]. efficiently using Mamdani 
fuzzy logics. The researchers also compared their work with the existing techniques 
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and found that their model outperformed as well as they highlighted the importance 
of using optimizers for energy efficiency and improving user comfort along with the 
impact of adaptive controllers to overcome incorrect PID controller selections. Shree, 
Lakshmi, et al. sourced the data from Kaggle which comprised of 29 features to focus 
on the minimal consumption of energy using various machine learning models such 
as LSTM along with the optimization techniques like genetic algorithm and grey wolf 
optimization to fine-tune hyper parameters [13]. While evaluating, GWO-LSTM 
highlighted the superior performance which showcased its exceptional predictive 
capabilities with minimal errors. Khan et al. used one dimensional deep convolutional 
neural network, LSTM, and scheduling algorithm to extract features, load forecasting 
based on features that had been extracted and optimize appliance operation times 
respectively to develop an energy consumption control system for smart homes [14]. 
They validated their model through simulation scenarios with authentic datasets 
which demonstrated its effectiveness in meeting energy demands without requiring 
additional energy sources and found that their proposed system displayed 
advancement in smart home energy management [14]. Liao et al. (2020) [32] 
explored deep learning techniques for air quality forecasting, focusing on CNNs, 
RNNs, LSTMs, and spatiotemporal networks for modeling nonlinear spatiotemporal 
features. They also discussed about the challenges like overfitting and practical 
implications for real-world deployment. 

 
While existing research has made significant strides in developing models to enhance 
energy efficiency in smart rooms, several challenges and limitations persist. Firstly, 
there is often a lack of consideration for the substantial computational time required 
to train these models, which can impact practical implementation. Researchers also 
encounter challenges related to the availability of limited datasets, leading to potential 
biases or issues with generalizability. Furthermore, data inconsistency across 
different sources poses a significant challenge, affecting the reliability and accuracy 
of the models. Addressing these challenges will be crucial for advancing the field and 
developing more effective strategies for enhancing the energy efficiency of home 
appliances in smart rooms. 
While existing studies have explored various methods to optimize energy efficiency 
in residential settings, the integration of indoor air quality (IAQ) as a critical factor 
remains underexplored. This research bridges that gap by incorporating IAQ 
parameters—such as CO2 levels, humidity, and temperature—into a novel deep 
learning framework, enabling dynamic and context-aware energy management. By 
employing advanced models like Bidirectional GRU, Stacked LSTM etc., this paper 
captures both short-term and long-term temporal dependencies, ensuring accurate 
predictions of appliance performance under varying environmental conditions. The 
use of a hybrid SMOTE-ENN technique to address class imbalance further enhances 
the reliability and generalizability of the results. This approach not only highlights 
the synergy between IAQ and energy efficiency but also sets a foundation for scalable 
and adaptive energy solutions in smart homes. Such work underscore the 
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transformative potential of integrating IAQ metrics into sustainable energy 
management practices, paving the way for smarter, healthier, and more energy-
efficient residential environments. 

Contribution of the paper 
In this paper the aim is to develop an automated system that uses deep learning 
techniques to identify as well as classify the air quality level based on multiple 
parameters including indoor air quality index. The contribution to perform the 
research is as follows: 
 Initially, a dataset consisting of 132007 records with seven attributes, such as CO2 

levels, humidity, PIR (Passive Infrared), temperature, indoor air quality indexes, 
and air quality level of rooms, were collected from two rooms 415 (Data I) and 
776 (Data II). 

 Subsequently, the data was preprocessed to check for null or missing values, 
followed by graphical visualization to understand the pattern of the dataset. 

 To address the class imbalance issue, the SMOTE (Synthetic Minority Over-
sampling Technique) technique was employed, and the features of the dataset were 
standardized through scaling. 

 Various deep learning techniques were applied and trained with the dataset. The 
performances of these techniques were later examined using various standard 
metrics including the learning curves, confusion matrix, and computational time. 

Structure of the paper 
The paper is structured to first address energy efficiency and its societal implications 

along with the analysis of existing methodologies in Section I. Section II then delves 
into the methodology employed to develop an energy efficiency model using 
advanced learning approaches. Subsequently, Section III examines the performance 
of these classifiers. Finally, Section IV concludes the entire paper and offers a 
comprehensive summary of the findings and their broader implications. 

I. RESEARCH METHOD 
This section defines the phases that have been used to predict and classify the Air Quality 

Level of a room using hybrid advanced deep learning techniques, as shown in Figure 
2. 
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Figure 2: Proposed system for air quality assessment using deep learning classifiers 
 
 

Dataset: The dataset collected records from 255 sensors which have been located across 
fifty one rooms spanning 4 floors of Sutardja Dai Hall at UC Berkeley. It includes 
diverse attributes like PIR sensor, Carbon Dioxide (CO2) tiers, humidity, 
temperature, and luminosity, with readings recorded every five seconds time series 
information in the form of UNIX EPOCH TIME timestamp [15]. 

 
 

Data Preprocessing: During this phase, initially, a thorough analysis is carried out to 
identify any missing or null values in each attribute for all 51 rooms. This is done to 
make sure that the data is complete and accurate, as shown in Table 1. The KNN 
imputer technique was employed for filling the missing values on the basis of 
information fetched from nearby data points [16]. This approach helps maintain the 
structure and patterns within the dataset. Afterward, using a comprehensive dataset, 
the air quality index (AQI) values for each room were calculated. This entailed 
collecting and analyzing the several characteristics linked to each space in order to 
calculate a comprehensive measure that represents the air quality. 
However, it was noted throughout this procedure that certain estimated AQI values 
were negative, which are not suitable for meaningful interpretation and analysis. In 
order to tackle this problem, the dataset was improved by removing records with 
negative AQI values and concentrating only on the data from two rooms i.e. 415 
(Data-I) and 776 (Data-II) that were chosen randomly from the original 51 rooms. 
Subsequently, utilizing the AQI data, we derived the AQL values and established our 
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desired classes as Low (0-50), Average (51-100), and Severe (101-500). 
Exploratory Data Analysis: In this paper, EDA is used to uncover some crucial 
information in order to understand the complex relationships between energy 
consumption as well as various environmental factors. Figure 3 outlines the 
correlation between computed indoor air quality index (AQI) values and the 
corresponding air quality level classes, such as LOW, AVERAGE, and SEVERE. 
The purpose is to determine the minimum and maximum indoor AQI values recorded 
from both rooms 415 (Data I) and 776 (Data II). This information is crucial for 
improving the classification system and establishing distinct thresholds for different 
air quality levels. Ultimately, this will enhance comprehension and enable effective 
management of indoor environmental conditions. 
Table 1: Comparison of missing values across attributes in Data-I and Data-II, to 
emphasize the significance of imputing missing data for accurate analysis 

 
Attributes Data-I (415) Data-II (776) 
Co2 0 1095 
Humidity 1113 1 
Light 1113 1 
PIR 55875 59171 
Temperature 1114 0 

 
 
 
 
 
 

(a) 
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(b) 

Figure 3: AQI values of Data I and Data II for different categories of AQL 
 
The graphical depiction in Figure 4 portrays the distribution of attribute values, 
encompassing CO2 concentration, PIR (Passive Infrared), light intensity, humidity, 
and temperature, across varying levels of air quality: low, average, and severe. Upon 
analyzing the data of Room 415 in Figure 4(a), it is discerned that the highest 
frequency of occurrences indicating low air quality is observed within the intervals 
of 450 to 500 for CO2 concentration, 23.0 to 23.5 for temperature, 58 to 60 for 
humidity, and 0 to 25 for light intensity. 
Similarly, for the average air quality category, peak incidences manifest within the 
ranges of 690 to 700 for CO2, 23.5 to 23.9 for temperature, 54 to 55 and 58 to 58.5 
for humidity, and 40 to 80 for light intensity. Conversely, in the severe air quality 
classification, predominant values are recorded between 1050 to 1100 for CO2 
concentration, 23.65 to 23.70 for temperature, below 58 (e.g., 57.84) for humidity, 
and 40 to 50 for light intensity. It's noteworthy that these values are approximations 
and not fixed constants. 
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(i)

 
 
(ii) 
 
 
 
 

 
(iii) 
 
Figure 4(a): Distribution of values of Data I features across various classes of AQL 
Similarly, we have extracted analogous information from the data recorded for Room 
776, as illustrated in Figure 4(b). The highest frequency of occurrences indicating 
low air quality is observed within the intervals of 450 to 500 for CO2 concentration, 
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23.0 to 23.5 for temperature, 57 to 58 for humidity, and 0 to 10 for light intensity. For 
the average air quality category, peak incidences manifest within the ranges of 700 
to 720 for CO2, around 25.0 for temperature, 54 to 55 for humidity, and 60, and 90 
to 100 for light intensity. Conversely, inthe severe air quality classification, 
predominant values are recorded at approximately 700 for CO2 concentration, around 
25.2 for temperature, 54.5 for humidity, and 80 to 100 for light intensity. 
Additionally, for PIR (Passive Infrared), there are some occurrences of values apart 
from zero across all the attributes. It is important to note that these values are 
approximations and not fixed constants. 

 

 
(i)
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(ii) 
 

 
(iii) 
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Figure 4(b): Distribution of values of Data II features across various classes of 
AQLThe aim of these visualizations was to enhance energy efficiency, optimizing the 
detection and management systems based on these identified thresholds could 
facilitate proactive interventions, ensuring resource allocation aligns with actual 
environmental conditions, thereby minimizing energy consumption while 
maintaining air quality standards. 
Data Augmentation: Hybrid approach of SMOTE and ENN has been used to 
augment the data by overcoming the issue of class imbalance, as shown in Figure 5. 
SMOTE generates synthetic instances for the minority class, which increases its 
representation in the dataset, while ENN removes noisy instances from both the 
minority and majority classes which leads to balanced and cleaner dataset overall 
[17]. By effectively addressing class imbalance and reducing noise, SMOTE-ENN 
enhances the performance of applied learning models. It can be represented as (i) 
𝑆𝑀𝑂𝑇𝐸 + 𝐸𝑁𝑁 (𝑋, 𝑦) = 𝐸𝑁𝑁(𝑆𝑀𝑂𝑇𝐸(𝑋𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 ), 𝑦𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 , 𝑘)  (i) 

Here, 𝑋 refers to feature matrix of the dataset, 𝑦 implies target vector of class labels, 
and 𝑘 is the number of nearest neighbours used in both SMOTE and ENN. However, 
many standard oversampling techniques, like standalone SMOTE, are effective in 
increasing the representation of minority classes by generating synthetic samples. But 
these methods can inadvertently introduce noise by creating synthetic samples near 
outliers or overlapping class boundaries, which can degrade model performance. 
Traditional under sampling methods, on the other hand, focus on removing data from 
the majority class to achieve balance, but this often results in loss of valuable 
information. 
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Figure 5: Class balancing achieved using the SMOTE-ENN technique to improve 
distribution of air quality levels in Data-I and Data-II 

Feature Scaling: Z-scores are useful to identify outliers within a dataset. Data points 
with Z- scores significantly greater than or less than zero are considered outliers, as 
they deviate substantially from the average values of the dataset. By standardizing the 
data using Z-scores, it becomes easier to identify and understand the significance of 
outliers and to compare data points across different datasets with varying means and 
standard deviations [18], as shown in eq(ii). 
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j j 

𝑥 − 𝜇 
𝑧 = 
𝜎 

(ii) 

 
 
Here, 𝑥 is the value of input data point, 𝜇 is the mean of population, and 𝜎 is the 
standard deviation of population. 
Classifiers: In the context of indoor energy efficiency, the MLP structure is 
customized to analyze various environmental parameters, inclusive of temperature, 
humidity, occupancy, and lights situations, collected from sensors deployed within a 
building. The structure commonly includes an input layer, in which environmental 
data is fed into the model, followed with the aid of one or extra hidden layers, which 
perform nonlinear adjustments and feature extraction. Each neuron within those 
hidden layers applies weighted connections and activation capabilities to method the 
input records. Finally, an output layer produces predictions for energy efficient 
operation based totally at the discovered patterns [19]. The mathematical equation of 
MLP is represented as eq (iii)-(iv) 

 
𝑛 

𝑧(𝑙) = ∑ 𝑤𝑙 𝑥 + 
𝑏𝑙 j  𝑖j  𝑖

 j 
𝑖=1 

(iii) 

𝑎(𝑙) = 

𝑓(𝑧(𝑙)) j
 j 

(iv) 

 
 
Here, n represents the input features, 𝑤𝑙 and 𝑧(𝑙) refers to the weight connected to jth neuron, 

𝑖j j 
(𝑙) 

𝑏𝑙 is bias, 𝑥𝑖 is the input feature, 𝑓(. ) is the activation function, and 𝑎 output of the jth 

neuron. Recurrent Neural Networks (RNNs) are a type of artificial neural network 
which are mostly used for processing sequential data to make them applicable for 
multiple tasks in optimizing energy efficiency for indoor environments. Its 
architecture includes input, hidden, and output layer with recurrent connections 
which enables the network for maintaining the information about past entered data in 
memory during processing current data [20]. By using the sequential nature of 
environmental data obtained from indoors such type of network contribute to 
optimize the use of energy by improvising the comfort of occupant as well as promote 
sustainability in indoor spaces. The hidden state (ℎ𝑡) in RNN is defined by eq(v) 
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ℎ𝑡 = 𝜎 (𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎℎ ℎ𝑡−1 + 

𝑏ℎ) 

(v) 

 
 
Here, 𝑊ℎ𝑥 and 𝑊ℎℎ implies the weight matrix for input to hidden and hidden to 

hidden connections, 𝜎 activation function, and 𝑏ℎ is the bias vector. Long Short-

Term Memory (LSTM) networks is one variant of RNN architecture that's designed 
for taking long time dependencies in sequential primarily based information and 
addressing the problems related to vanished gradient. This property of LSTM makes 
it particularly efficient for the ones obligations which are associated with energy 
efficiency in indoor environments. The structure 
of LSTM includes memory cells having self-connected devices referred to as gates. 
These gates consist of an input, forget, and an output gate which alter the flow of data 
through the network and manipulate it at different levels of processing [21]. In the 
area of efficient use of indoor energy, LSTM networks excel at predicting 
complicated temporal styles in sensor data, which include fluctuations inside the 
temperature, tendencies of occupancy, and energy consumption profiles. The 
equations of the gates are presented as (vi-xi): 

 
 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑓𝑡 ) = 𝜎(𝑊𝑓. [ℎ𝑡−1 , 𝑥𝑡] 

+ 𝑏𝑓) 

(vi) 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑖𝑡) = 𝜎(𝑊𝑖. [ℎ𝑡−1 , 𝑥𝑡] + 

𝑏𝑖) 

(vii) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑜𝑡) = 𝜎(𝑊𝑜. [ℎ𝑡−1 , 𝑥𝑡] 

+ 𝑏𝑜) 

(viii) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 (𝑐̃𝑡) 

= 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1 , 𝑥𝑡] +

𝑏𝑐) 

(ix) 

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑡) = 𝑓𝑡 . 𝑐𝑡−1 + 

𝑖𝑡. 𝑐̃𝑡 

(x) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡) = 𝑜𝑡 . 

tanh(𝑐𝑡) 

(xi) 

 
Here, 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜, 𝑊𝑐 are the weight matrices for the forget, input, output gate and 

candidate cell state respectively, 𝜎 and 𝑡𝑎𝑛ℎ refers to the activation and the 
hyperbolic tangent activation function, (.) matrix multiplication. The other variation 
of recurrent neural network 
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is Gated Recurrent Unit structure. This architecture is similar to LSTM however 
it copes with the restrictions of conventional RNNs. Apart from this; it is also able to 
efficiently fetch long-term dependencies in sequential facts. The structure of GRU is 
based totally on gating mechanisms which consist of reset gate and forget gate. These 
gates control the flow of records thru the network and allow the GRU for retaining 
or forget about data selectively from previous time steps. This characteristic permits 
the network to capture long-time period dependencies whilst reducing the vanishing 
gradient problem [22]. Historical records may be used to train GRUs network for 
learning the underlying patterns in addition to dynamics of indoor environments, 
which enable adaptive energy management techniques that work for conditions in 
real-time. It is mathematically represented by eqs (xii-xv): 

 
 
 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 (𝑧𝑡) = 𝜎(𝑊𝑧. [ℎ𝑡−1, 𝑥𝑡] 

+ 𝑏𝑧) 

(xii) 

 
𝑅𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑟𝑡 ) = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡] + 

𝑏𝑟) 

(xiii) 

 
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 (ℎ̃𝑡) 

= 𝑡𝑎𝑛ℎ(𝑊ℎ . [𝑟𝑡 ⊙ ℎ𝑡−1
, 𝑥𝑡] 

+ 𝑏ℎ) 

(xiv) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡) 

= (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡

⊙ ℎ̃𝑡 

(xv) 

 
Here, 𝑊𝑧, 𝑊𝑟, 𝑊ℎ refers to the weight matrices of update, reset gate and candidate 

hidden state, ⊙ implies to element wise multiplication, and ℎ𝑡̃ is the current hidden 

state. 
The architecture of Bidirectional Long Short-Term Memory (Bi-LSTM) networks 
incorporates records from both past and future time steps. It consists of two LSTM 
layers in which one layer approaches the input information in forward order and the 
other layer manners it in reverse order. While processing the data in both instructions, 
the Bi-LSTM captures data from both past and future contexts. This property of 
BiLSTM allows it to learn deeper representations of the enter records and enables it 
to higher recognize the temporal dynamics of indoor environmental data. Likewise, 
the architecture of a Bi-GRU consists of two GRU layers which fit precisely like 
BiLSTM. Here also, the bidirectional nature of the model allows it to fetch 
information from each beyond and future contexts concurrently to learn complex 
representations of the enter data [23,24]. The mathematical representation of 
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BiLSTM is shown in the form of forward (xvi) as well as backward direction (eq 
xvii): 

 
Forward LSTM xvi 
𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑓 (𝑓)) = 𝜎(𝑊 (𝑓). [ℎ (𝑓), 𝑥 ] + 𝑏 (𝑓)) 

𝑡 𝑓 𝑡−1 𝑡 𝑓 
 
𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑖 (𝑓)) = 𝜎(𝑊 (𝑓). [ℎ (𝑓), 𝑥 ] + 𝑏 (𝑓)) 

𝑡 𝑖 𝑡−1 𝑡 𝑖 
 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑜 (𝑓)) = 𝜎(𝑊 (𝑓). [ℎ (𝑓), 𝑥 ] + 𝑏 (𝑓)) 

𝑡 𝑜 𝑡−1 𝑡 𝑜 
 
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 (𝑐̃ (𝑓)) = 𝑡𝑎𝑛ℎ(𝑊 (𝑓). [ℎ (𝑓), 𝑥 ] + 𝑏 (𝑓)) 

𝑡 𝑐 𝑡−1 𝑡 𝑐 
 

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐 (𝑓)) = 𝑓 (𝑓). 𝑐 (𝑓) + 𝑖 (𝑓). 𝑐̃ (𝑓) 
𝑡 𝑡 𝑡−1 𝑡 𝑡 

 
𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ (𝑓)) = 𝑜 (𝑓) . tanh(𝑐 (𝑓)) 

𝑡 𝑡 𝑡 
xvii 

Backward LSTM 
𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑓 (𝑏)) = 𝜎(𝑊 (𝑏). [ℎ (𝑏), 𝑥 ] + 𝑏 (𝑏)) 
𝑡 𝑓 𝑡−1 𝑡 𝑓 
 
𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑖 (𝑏)) = 𝜎(𝑊 (𝑏). [ℎ (𝑏), 𝑥 ] + 𝑏 (𝑏)) 
𝑡 𝑖 𝑡−1 𝑡 𝑖 
 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑜 (𝑏)) = 𝜎(𝑊 (𝑏). [ℎ (𝑏), 𝑥 ] + 𝑏 (𝑏)) 
𝑡 𝑜 𝑡−1 𝑡 𝑜 
 
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 (𝑐̃ (𝑏)) = 𝑡𝑎𝑛ℎ(𝑊 (𝑏). [ℎ (𝑏), 𝑥 ] + 𝑏 (𝑏)) 

𝑡 𝑐 𝑡−1 𝑡 𝑐 
 
𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐 (𝑏)) = 𝑓 (𝑏). 𝑐 (𝑏) + 𝑖 (𝑏). 𝑐̃ (𝑏) 
𝑡 𝑡 𝑡−1 𝑡 𝑡 
 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ (𝑏)) = 𝑜 (𝑏) . tanh(𝑐 (𝑏)) 
𝑡 𝑡 𝑡 
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Likewise, for Bi-GRU, the equations are represented as (xviii-xx) 
 
Forward GRU xvii

i 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 (𝑧 𝑓) = 𝜎(𝑊 𝑓. [ℎ 𝑓, 𝑥 ] + 𝑏 𝑓) 
𝑡 𝑧 𝑡−1 𝑡 𝑧 
 
𝑅𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑟 𝑓) = 𝜎(𝑊 𝑓. [ℎ 𝑓, 𝑥 ] + 𝑏 𝑓) 
𝑡 𝑟 𝑡−1 𝑡 𝑟 
 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 (ℎ̃ 𝑓
) = 𝑡𝑎𝑛ℎ(𝑊 𝑓. *𝑟 𝑓 ⊙ ℎ 𝑓 𝑥 + + 𝑏 𝑓) 

𝑡 ℎ 𝑡 𝑡−1 ,  𝑡 ℎ 

 
𝑓 𝑓 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡  ) = (1 − 𝑧𝑡𝑓) ⊙ ℎ𝑡−1  + 𝑧𝑡𝑓 ⊙ ℎ̃𝑡 𝑓 

 

Backward GRU xix 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 (𝑧 𝑏) = 𝜎(𝑊 𝑏. [ℎ 𝑏, 𝑥 ] + 𝑏 𝑏) 
𝑡 𝑧 𝑡−1 𝑡 𝑧 
 
𝑅𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑟 𝑏) = 𝜎(𝑊 𝑏. [ℎ 𝑏, 𝑥 ] + 𝑏 𝑏) 
𝑡 𝑟 𝑡−1 𝑡 𝑟 
 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 (ℎ̃ 𝑏
) = 𝑡𝑎𝑛ℎ(𝑊 𝑏. *𝑟 𝑏 ⊙ ℎ 𝑏 𝑥 + + 𝑏 𝑏) 

𝑡 ℎ 𝑡 𝑡−1 ,  𝑡 ℎ 

 
𝑏 𝑏 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡 ) = (1 − 𝑧𝑡𝑏) ⊙ ℎ𝑡−1  + 𝑧𝑡𝑏 ⊙ ℎ̃𝑡 𝑏 

 

At the end, the output of both the networks at time stamp t are computed using the 
equation (xx) 

 

 
ℎ = [ℎ(𝑓), ℎ(𝑏)] 
𝑡 𝑡 𝑡 

Xx 

 
Stacked Long Short-Term Memory (LSTM) architecture consists of multiple 
LSTM layers which are stacked on top of each other. Here, each LSTM layer 
processes the input data sequentially, where the output of one layer is served as the 
input to the next layer. When multiple LSTM layers are stacked, it allows the model 
to capture both short-term as well as long-term dependencies in the data to make it 
more capable of capturing the complex dynamics of indoor environmental variables. 
Likewise, Stacked Gated Recurrent Unit networks works on the same concept as 
stacked LSTM networks however uses GRU unitsrather. In this structure, various 
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GRU layers are stacked on peak of every different to create a deep network. Every 
layer in a stacked GRU architecture includes a series of GRU units, with every unit 
having its own set of parameters to analyze the patterns and relationships of the input 
data. The output of one GRU layer serves the input to the following layer in order to 
allow network to learn hierarchical representations of the information across multiple 
stages of abstraction [25, 26]. In addition to this, the hyperparameter values used for 
training the models are also mentioned in Table 2. 

 
Performance Metrics: In the context of energy efficiency for smart home appliances 
based on indoor air quality index and air quality level, various key metrics are 
typically used for evaluating the performance of classification models. Accuracy 
(xxi) provides an overall measure of model performance by taking the proportion of 
correctly classified instances [27]. 

Table 2: Hyperparameters and their selected values for model training 
 

Hyperparameter Value 
Learning Rate 0.001 
Batch Size 16 
Epochs 15 
Optimizer Adam 
Dropout Rate 0.5 
Activation Layer ReLU in hidden, 
                Softmax in output 

 
 
Loss (xxii) quantifies the difference between predicted and actual values. It is often 
measured using metrics like cross-entropy which serves as a gauge of model 
optimization and convergence [28]. In addition to these metrics, there are other 
measures also such as Precision 
(xxiii) which is crucial to assess the ability of the model to avoid false positives to 
identify the equipment which is responsible for poor air quality. It is a measure of the 
proportion of correctly predicted positive cases among all predicted positive cases 
while as Recall (xxiv) is computing the ability of the model which captures all actual 
positive cases that are correctly identified and to balance the performance of the 
models on the basis of these metrics, F1 score (xxv) comes into play which is mostly 
useful when there is no synchronization between positive and negative instances [29, 
30]. 

 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐴𝑐𝑐 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

xxi 
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(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)2 
𝐿𝑜𝑠𝑠 = 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

xxii 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

xxiii 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

xxiv 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

Xxv 

II. RESULTS AND DISCUSSION 
The section presents the results of the models which have been trained by the data 
collected from both the rooms in different subsections. 

Analysis of models for the Data I of Room 415 
Table 3 presents the performance metrics of various neural network models, 
including MLP (Multi-Layer Perceptron), RNN (Recurrent Neural Network), GRU 
(Gated Recurrent Unit), LSTM (Long Short-Term Memory), and combinations of 
these models, evaluated on training and validation datasets. The metrics considered 
are accuracy and loss, where higher accuracy and lower loss values indicate better 
performance. 
Table 3: Accuracy and loss metrics for training and validation phases of various models 

applied to Data-I 
 
Models Training Validation 

Acc Loss Acc Loss 
MLP 99.53 0.0146 99.16 0.0200 
RNN 99.44 0.0169 99.75 0.0061 
Bidirectional GRU 99.46 0.0152 99.81 0.0081 
Bidirectional LSTM 99.47 0.0148 99.72 0.0066 
LSTM 99.41 0.0166 99.57 0.0104 
GRU 99.49 0.0149 99.79 0.0082 
Stacked LSTM 99.40 0.0173 99.56 0.0102 
Stacked GRU 99.45 0.0162 99.51 0.0156 

 
Notably, in case of training phase, the MLP model achieves the best accuracy at 
99.53% with the lowest loss of 0.0146, suggesting it as the best performer in terms of 
training metrics as compared to the other models. Bidirectional versions of GRU and 
LSTM additionally show strong overall performance, with Bidirectional LSTM 
slightly outperforming Bidirectional GRU in terms of lowest loss (0.0148 vs. 0.0152) 
and marginally better accuracy (99.47% vs. 99.46%). This shows that the 
bidirectional nature of those models efficaciously captures temporal dependencies in 
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both directions thereby enhancing their learning capability. Stacked LSTM and 
Stacked GRU architectures additionally carry out properly with 99.40% and 99.45% 
accuracies respectively, but slightly beneath their non-stacked architectures i.e. 
LSTM and GRU with 99.41% and 99.49% respectively, indicating that deeper 
networks do no longer necessarily enhance performance for this dataset. In case of 
validation phase, The Bidirectional GRU and Bidirectional LSTM models achieve 
exceptionally high validation accuracy (99.81% and 99.72%, respectively) with low 
loss values (0.0081 and 0.0066, respectively), indicating strong generalization 
capabilities due to their ability to capture temporal dependencies in both directions. 
Models like the MLP achieve good performance with a validation accuracy of 
99.16% and a loss of 0.0200, though they are slightly outperformed by RNN-based 
models due to their limited ability to capture sequential dependencies. LSTM and 
GRU models perform well, with accuracies of 99.57% and 99.79% and losses of 
0.0104 and 0.0082, respectively, underscoring their effectiveness for sequential data. 
Stacked LSTM and Stacked GRU architectures exhibit solid performance but do not 
significantly surpass their single-layer counterparts, with accuracies of 99.56% and 
99.51%, respectively.Figure 6 defines the learning curves of the models for training 
and validation accuracy as well as loss for 15 epochs. It has been found that MLP and 
RNN shows the good fit of learning curves while as remaining models shows some 
kind of zig-zag movements which indicates minor fluctuations in their performance. 
In addition to this, we can find here that the curve of validation loss is lower than the 
training loss which indicates that the validation dataset may be easier for the model 
to predict than the training dataset. Likewise, the curve of validation accuracy is 
higher than training accuracy from the beginning of the epochs and it implies that 
validation dataset may be easier or have a different distribution than the training set 
which leads to its higher performance. 

 

 
MLP 
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Stacked GRU 

 
Figure 6: Learning curves depicting training/validation accuracy and loss for models 

applied to Data-I to indicate convergence and generalization trends.Table 4 
presents precision, recall, and F1 scores for various neural network models, 
providing a comprehensive evaluation of their performance. 

Table 4: Analysis of models for the energy efficient home appliances Data-I 
 
Models Precision Recall F1score 

MLP 0.9971 0.9915 0.9914 

RNN 0.9975 0.9975 0.9974 

Bidirectional GRU 0.9980 0.9982 0.9979 

Bidirectional LSTM 0.9972 0.9972 0.9972 

LSTM 0.9957 0.9957 0.9956 

GRU 0.9979 0.9980 0.9979 

Stacked LSTM 0.9955 0.9955 0.9954 

Stacked GRU 0.9951 0.9950 0.9950 

 
On comparing the performance of all the applied classifiers, it has been found that 
BidirectionalGRU computed the highest scores of precision, recall, and F1 score with 
0.9980, 0.9982, and 0.9979 respectively followed by Gated Recurrent Unit with 
precision as 0.9979, recall as 0.9980, and F1 score as 0.9979. This performance 
depicts that these models have been able to classify the instances correctly. RNN, 
LSTM and BidirectionalLSTM also indicates their effectiveness by generating the 
balance values of precision (0.9975, 0.9957 and 0.9972), (0.9975, 0.9957, and 
0.9972), and (0.9974, 0.9956, and 0.9972) respectively. Likewise, stacked LSTM and 
Stacked GRU also performed in a similar way by managing balance between 
precision, recall, and F1 score with their generated values. However, it has been seen 
that the least value has been generated by MLP in terms of recall and F1 score with 
0.9915 and 0.9914 which shows that the model still needs to improve its performance 
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for this specific dataset. This indicates that the MLP requires further improvement to 
enhance its performance for this specific dataset. 

 
A confusion matrix of 3x3 size has been also 
created in Figure 7 to analyse the actual and 
predicted values of the models on the basis of
their true positive, true negative, false positive, 
and false negative values. Additionally, it also 
enables us to understand the strengths and the 
weakness of the models by separating the 
predictions made by them in different classes. 
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Figure 7: Confusion matrix depicting the performance of models on Data-I for three 
air quality classes: Low, Average, and Severe 
 
 
Table 5 presents the performance metrics of models across three different classes of 
smart home dataset i.e. Low, Average, and Severe based on precision, recall, and F1 
-score, to evaluate their effectiveness in classifying them. 

 
 
Table 5: Class-wise analysis of models for Data-I to show their precision, recall, and 
F1- scores across Low, Average, and Severe air quality classes 
 

Models Class Precision Recall F1score 
 
MLP 

Low 1.00 0.9918 0.9958 
Average 0.9751 1.00 0.9873 
Severe 1.00 0.9829 0.9913 

 
RNN 

Low 1.00 0.9980 0.9989 
Average 0.9980 0.9946 0.9962 
Severe 0.9945 1.00 0.9972 
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Bidirectional GRU 

Low 1.00 0.9951 0.9975 
Average 0.9951 0.9995 0.9972 
Severe 0.9991 1.00 0.999 

 
Bidirectional LSTM

Low 1.0 0.9965 0.9982 
Average 0.9965 0.9951 0.9958 
Severe 0.9951 1.0 0.9975 

 
LSTM 

Low 1.00 0.9967 0.9983 
Average 0.9967 0.9904 0.9935 
Severe 0.9905 1.00 0.9952 

 
GRU 

Low 1.00 0.9948 0.9973 
Average 0.9941 0.9997 0.9968 
Severe 0.9997 0.9997 0.9997 

Stacked LSTM Low 1.00 0.9950 0.9974 
Average 0.9949 0.9917 0.9932 
Severe 0.9917 1.00 0.9958 

 
Stacked GRU 

Low 1.00 0.9959 0.9979 
Average 0.9959 0.9892 0.9925 
Severe 0.9895 1.00 0.9947 

After analyzing the table, it has been observed that in case of Low class, all the 
models have performed well by scoring the perfect precision scores of 1.00 which 
means that every positive prediction made by the model is indeed a true positive. But 
with slight variations among recall and F1 score. This variation indicates models are 
identifying true positives with differing success rates. Some models might be missing 
more true positives (higher false negatives) than others. For this class, the highest 
recall and F1 score value has been computed by RNN with 0.9980 and 0.9989 
followed by LSTM and bidirectionalLSTM with 0.9967 and 0.9965 as recall and 
0.9983 and 0.9982 as F1 score each. However, MLP shows the high number of false 
negatives and misses many true positives by computing the least recall and F1 score 
values with 0.9918 and 0.9958 respectively. In case of Average class of air quality 
level, only MLP computed the perfect recall of 1.00 as compared to other models 
which indicates that MLP correctly identifies all the true positive cases without 
missing any. While examining the models for rest of the parameters such as precision, 
the highest value has been computed by RNN with 0.9980 followed by LSTM and 
BidirectionalLSTM with 0.9967 and 0.9965 respectively which defines the true 
positive prediction made by them. Likewise, for recall and F1 score, the highest 
values have been computed by GRU with 0.9997 and 0.9968 as well as 
BidirectionalGRU with 0.9995 and 0.9972 respectively. But on the contrary, the 
lowest values for all the performance metrics has been obtained by GRU in case of 
precision with 0.9941, stacked GRU in terms of recall of F1 score with 0.9892 and 
0.9925 respectively. At the end, for Severe class, only MLP computed the perfect 
precision score while as the rest of the models such as RNN, BidirectionalGRU, 
BidirectionalLSTM, LSTM, StackedLSTM, and StackedGRU obtained the perfect 
recall scores of 100%. GRU maintained the balance relationship between the metrics 
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by computing 0.9997 each which means very low number of false positives and false 
negatives of severe class. In addition to this, Stacked GRU obtained the lowest 
precision value of 0.9895 and MLP had least recall and F1 score value which defines 
there is still a room for improvement. 

 
 

Analysis of models for the Data II of Room 776 
Table 6 presents a comparative analysis of various deep learning models based on 
their training accuracy and loss for the data collected from room 776. 
Table 6: Accuracy and loss values for training and validation phases of neural network 

models applied to Data-II 
Models Training Validation 

Acc Loss Acc Loss 
MLP 99.17 0.0276 99.58 0.0140 
RNN 99.26 0.0240 99.43 0.0158 
Bidirectional GRU 99.27 0.0238 99.41 0.0151 
Bidirectional LSTM 99.14 0.0273 99.45 0.0130 
LSTM 99.20 0.0255 99.47 0.0143 
GRU 99.24 0.0247 99.63 0.0118 
Stacked LSTM 99.13 0.0281 99.64 0.0117 
Stacked GRU 99.16 0.0264 99.34 0.0177 

 
In the case of training phase, the Bidirectional GRU achieves the highest training 
accuracy of 99.27%, closely followed by the RNN with 99.26%, and the GRU with 
99.24%. This suggests that these recurrent-based models are particularly effective in 
capturing the patterns in the training data. In terms of training loss, which indicates 
how well the model fits thetraining data (with lower values being better), the 
Bidirectional GRU also performs the best, with the lowest loss of 0.0238. This is 
followed by the RNN with a loss of 0.0240, and the GRU with 0.0247. These low 
loss values, in conjunction with their high accuracies, suggest that these models not 
only learn well but also generalize effectively on the training data without overfitting. 
On the other hand, models like the Stacked LSTM and Stacked GRU, while still 
achieving high accuracies (99.13% and 99.16% respectively), show slightly higher 
loss values (0.0281 and 0.0264 respectively) compared to their simpler counterparts. 
This could imply that the added complexity of stacking layers does not necessarily 
translate to better performance on the training data and may even lead to marginally 
increased training loss. From the validation data, all models show high performance 
with accuracies ranging from 99.34% to 99.64%, and low loss values between 0.0117 
and 0.0177. The Stacked LSTM model achieves the highest validation accuracy at 
99.64%, closely followed by the GRU with 99.63%, indicating that these models 
generalize particularly well to unseen data. This high performance suggests that these 
models effectively capture the underlying patterns in the dataset. In terms of 
validation loss, which measures how well the model fits the validation data (with 
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lower values being better), the Stacked LSTM again performs the best with the lowest 
loss of 0.0117, closely followed by the GRU with a loss of 0.0118. These low loss 
values reinforce the superior generalization capability of these models. Interestingly, 
the MLP model, despite its simpler architecture, achieves a very high validation 
accuracy of 99.58% and a low loss of 0.0140, indicating that it is also a strong 
performer and can be considered a competitive model for this task. The RNN, 
Bidirectional GRU, and Bidirectional LSTM models show slightly lower validation 
accuracies (99.43%, 99.41%, and 99.45%, respectively) and higher losses (0.0158, 
0.0151, and 0.0130, respectively) compared to the GRU and Stacked LSTM. This 
suggests that while they are still effective, they may not capture the validation data 
patterns as well as the GRU-based models and the Stacked LSTM. The Stacked GRU 
model obtained 99.34% as validation accuracy on a higher loss of 0.0177 which 
indicates the possibility of overfitting or difficulty in effectively training the deeper 
architectures. 
Like in the case of Data-I, here also the learning curves of the models for training and 
validation accuracy as well as loss for 15 epochs is defined in Figure 8. According to 
our research, it has been observed that MLP and RNN models exhibit a good fit of 
learning curves while as in case of Bidirectional GRU, a peak can be seen which 
defines that the model might not have learned enough to make accurate predictions 
but as the training progresses, the model learns to capture more complex patterns in 
the data which leads to its improved performance. 
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Stacked GRU 
 
Figure 8: Learning curves for models trained on Data-II to highlight differences 
in performance between training and validation dataset 
 
 
Table 7 analyzes the performance of various deep learning models based on their 
precision, recall, and F1 score. 

 
Table 7: Analysis of models for the energy efficient home appliances Data-II 
 
Models Precision Recall F1score 

MLP 0.9957 0.9957 0.9957 

RNN 0.9943 0.9943 0.9942 

Bidirectional GRU 0.9940 0.9940 0.9939 

Bidirectional LSTM 0.9945 0.9945 0.9945 

LSTM 0.9920 0.9973 0.9946 

GRU 0.9963 0.9963 0.9962 

Stacked LSTM 0.9959 0.9964 0.9961 

Stacked GRU 0.9961 0.9966 0.9949 

 
GRU and Stacked GRU indicated the effectiveness in minimizing the false positives 
by obtaining the highest precision values of 0.9963, 0.9961, and 0.9959 respectively 
followed by StackedLSTM and MLP with their scores as 0.9959 and 0.9957. On the 
other hand, in terms of recall, LSTM with highest value of 0.9973 reflected its ability 
in identifying true positives albeit of having lower precision of 0.9920 which 
ultimately computed 0.9946 as F1 score. Apart from LSTM, Stacked GRU, Stacked 
LSTM, and GRU also presented their efficiency in predicting the actual instances by 
obtaining the top recall values with 0.9966, 0.9964, and 0.9963 on an F1 score of 
0.9949, 0.9961, and 0.9962 respectively. MLP model also demonstrates its 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

 

 
 
 
 

 
601  

robustness by having a good F1 score of 0.9957 while as Bidirectional GRU and 
BidirectionalLSTM generated the lowest values of precision and recall with 0.9940 
and0.9945 each. It suggested that the models may not perform as consistently well as 
the other models. 
Here also, a confusion matrix of 3x3 size has been also created to analyze the actual 
and predicted values of the models as well as to get a concise view of how models are 
performing across the class, shown in Figure 9. 
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Figure 9: Confusion matrix showing model predictions versus actual values for Data-
II across air quality levels: Low, Average, and Severe 
Table 8 analyzes the performance of applied classifiers based on three different 
classes of dataset i.e. Low, Average, and Severe for the evaluation metrics as 
precision, recall, and F1 score. 
Table 8: Evaluation of model performance in distinguishing air quality levels (Low, 
Average, Severe) in Data-II 
 

Models Class Precision Recall F1score 
MLP Low 1.00 0.9911 0.9955 

Average 0.9912 0.9961 0.9936 
Severe 0.9961 1.00 0.9980 

RNN Low 1.00 0.9918 0.9958 
Average 0.9918 0.9911 0.9914 
Severe 0.9912 1.00 0.9955 

Bidirectional GRU Low 1.00 0.9905 0.9952 
Average 0.9903 0.9916 0.9909 
Severe 0.9918 1.00 0.9958 
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Bidirectional LSTM Low 1.00 0.9931 0.9966 
Average 0.9932 0.9904 0.9918 
Severe 0.9903 1.00 0.9951 

LSTM Low 0.9922 1.00 0.9961 
Average 0.9921 0.9919 0.9919 
Severe 0.9919 1.00 0.9959 

GRU Low 1.00 0.9913 0.9956 
Average 0.9914 0.9977 0.9945 
Severe 0.9976 1.00 0.9987 

Stacked LSTM Low 1.00 0.9914 0.9957 
Average 0.9913 0.9979 0.9945 
Severe 0.9964 1.00 0.9982 

Stacked GRU Low 1.00 0.9900 0.9949 
Average 0.9898 0.9999 0.9948 
Severe 0.9902 1.00 0.9950 

 
For the low class, all models indicated their robustness in perfectly classifying as well 
as identifying the classes of them obtained perfect precision score of 100% except 
LSTM as this model computed the perfect recall score. However, there are also few 
classifiers which computed lowest recall values like MLP (0.9911), RNN (0.9918), 
BidirectionalGRU (0.9905), GRU (0.9913), StackedLSTM (0.9914), and 
StackedGRU (0.9900) which indicates that these models are failing to correctly 
identify a significant number of true positive instances for this particular class. In 
addition to this, Bidirectional LSTM show slight variations with a recall of 0.9931 
which results in F1 scores of 0.9966, depicts slight better performance compared to 
others. Likewise, in case of average class, all the models except StackedGRU 
maintain high precision, recall, and F1 scores, typically above 0.99. However, models 
like the Bidirectional GRU, RNN, LSTM, and Bidirectional LSTM have slightly 
lower F1 scores of 0.9909, 0.9914, 0.9919, and 0.9918, respectively, due to their 
slight fall of performance in either precision or recall. Stacked GRU shows highly 
sensitive nature in detecting the instances of average class by computing the highest 
recall value of 0.9999 but on a lower precision score of 0.9898 which ultimately leads 
to an F1 score of 0.9948. Similarly, lowest recall values have been also computed by 
the models such as RNN (0.9911), BidirectionalGRU (0.9916), BidirectionalLSTM 
(0.9904), and LSTM (0.9919) which means that they are not able to classify the actual 
positive values correctly. In the severe class, all the models again show very high 
performance by achieving perfect recall score of 1.00. This characteristic indicates 
that the models are able to identify all instances of the severe class correctly. In case 
of F1 score, GRU and Stacked LSTM models stand out by computing the highest 
values as 0.9987 and 0.9982 respectively, while as the other models like MLP and 
RNN obtained slightly lower F1 scores (0.9980 and 0.9955) each. In addition to this, 
Stacked GRU and Bidirectional LSTM obtained the lowest precision score of 0.9902 
and 0.9903 which indicates these models are not able to predict the true positive 
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classes and require room for improvement. 
 
Table 9 provides the detailed analysis of the time frame taken by different deep 
learning models to process Data I and Data II. The Multilayer Perceptron because of 
its simple architecture stands out with the shortest training time of 1 hour which 
indicates its faster computational efficiency compared to the other models. On the 
other hand, due to their deeper and complex architectures, the Stacked LSTM and 
Stacked GRU require longer training times of 1 hour and 40 minutes and 2 hours, 
respectively. Similarly, the Bidirectional LSTM and Bidirectional GRU models 
computed in the longest training times of 2 hours and 5 minutes and 2 hours, 
respectively. While as the RNN model, LSTM and GRU models trained in an average 
period of time with a training time of 1 hour and 30 minutes, 1 hour and 25 minutes 
and 1 hour and 40 minutes respectively. 

Table 9: Overall execution time of applied learning models for Data-I and Data-II, to 
underscore the impact of model complexity on computational efficiency 

 
Models Time frame 
LSTM 1 hour 25 min 
GRU 1 hour 40 min 
Stacked LSTM 1 hour 40 min 
Stacked GRU 2 hour 
MLP 1 hour 
RNN 1 hour 30 min 
Bidirectional GRU 2 hour 
Bidirectional LSTM 2 hour 5 min 

Overall, in terms of practical application scenarios, the excellent performance of 
Bidirectional GRU and Stacked LSTM models in terms of accuracy and loss could be 
applied to real-time energy optimization systems in smart homes. These models could 
dynamically adjust energy usage for heating, ventilation, and lighting based on indoor 
air quality parameters such as CO2 levels and temperature, ensuring energy 
efficiency while maintaining comfort. Additionally, insights from the learning 
curves, which highlight fluctuations in training and validation accuracy, can guide 
practical decisions in hyperparameter tuning during the deployment of models in real-
world scenarios. The SMOTE-ENN technique for class balancing could be 
effectively applied in homes with uneven energy consumption patterns, such as those 
with varying seasonal appliance usage, ensuring that models handle such imbalances 
for accurate predictions. Lastly, the execution times of different models, detailed in 
Table 8, could inform decisions in scenarios where computational efficiency is 
crucial, such as in real-time energy management systems requiring rapid model 
updates and predictions. These practical applications demonstrate how deep learning 
models can be directly translated into impactful, energy-saving solutions for 
residential buildings, contributing to sustainability and efficiency. 
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III. CONCLUSION 

This paper highlighted significant advancements in applying deep learning 
techniques to improve energy efficiency in home appliances. By analyzing factors 
such as CO2 levels, humidity, and temperature, the models demonstrated impressive 
results in optimizing energy consumption and promoting sustainability. Among the 
classifiers tested, Bidirectional GRU and Stacked LSTM outperformed others in 
terms of accuracy and loss for data collected from two rooms 415 and 776, 
showcasing the potential of AI-driven approaches to revolutionize energy 
management in smart homes. Furthermore, these models can optimize real-time 
decision-making in smart appliances, contributing to significant energy cost savings 
and a reduced environmental footprint. This research highlights the broader potential 
for integrating AI-driven approaches into energy policies and sustainability 
strategies, enabling more effective reductions in residential energy consumption and 
combating climate change However, the research's dependency on specific datasets 
and observed fluctuations during training and validation point to limitations like 
overfitting and constrained generalizability. Addressing these issues requires 
diversifying datasets, adjusting learning rates, increasing batch sizes, or employing 
regularization techniques to stabilize training and enhance model robustness. Future 
research should also explore advanced optimization methods like Adaptive Moment 
Estimation, Root Mean Square Propagation, and evolutionary algorithms. 
Additionally, integrating IoT devices and real-time data processing can enhance 
responsiveness and scalability, bridging the gap between technological advancements 
and their practical deployment in sustainable energy systems. 
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