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Abstract 

Accurate edge detection in medical imaging, particularly in COVID-19 CT scans, is 
critical for diagnosing and assessing the severity of infections accurately. Traditional edge 
detection methods often struggle with the complexity and variability of medical image data, 
leading to less reliable diagnostic outcomes. This research introduces an adaptive graph- 
based multi-scale edge detection model that significantly enhances the accuracy and 
reliability of edge delineation in COVID-19 CT scans. The proposed model employs 
Adaptive Graph Convolutional Networks (AGCNs) integrated with a dynamic, multi-scale 
analysis approach. This methodology allows the model to adaptively process image data 
across multiple scales, effectively capturing both global structures and fine details. The 
graph-based approach is tailored to adjust the connectivity and weights dynamically based on 
the local context of the image features, enabling superior detection of subtle and complex 
patterns. Experimental results demonstrate that the proposed model achieves an accuracy of 
0.995, precision of 0.920, recall of 0.970, and a Dice Similarity Coefficient (DSC) of 0.945. 
These metrics significantly surpass those of traditional methods like Sobel + GCN and Canny 
+ GCN, and even outperform the advanced CDSE-UNet model referenced in earlier studies. 
Qualitatively, the edges detected by the proposed model are sharper and more consistent with 
the clinical annotations provided by medical experts. The novelty of this research lies in its 
integration of graph-based learning with a multi-scale approach tailored specifically for 
medical imaging, providing a robust framework that can adapt to various imaging conditions 
and requirements. This model not only sets a new standard in medical image edge detection 
but also opens avenues for further research and application in other areas of medical imaging. 

1. Introduction 

Edge detection is a critical component in the realm of medical imaging, serving as the 
foundational step in many image analysis tasks such as image segmentation, object detection, 
and feature extraction [1]. In medical contexts, accurately identifying the boundaries of 
anatomical structures, lesions, or pathologies directly influences diagnostic accuracy, 
treatment planning, and patient outcomes [2]. Being able to clearly outline edges within 
medical images helps doctors and radiologists determine the size and scope of diseases. This 
includes conditions like tumors or infectious diseases such as COVID-19, which show up on 
imaging tests as changes in the density and structure of tissues [3, 4]. 

The importance of edge detection in medical imaging cannot be overstated [5]. For 
example, in oncology, the exact boundary of a tumor may determine the staging of cancer 
and the appropriate surgical or therapeutic intervention [6]. Similarly, in the treatment of 
cardiovascular diseases, identifying vessel boundaries can help in assessing the severity of 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

 

 
 

 
 
 

 

65 

arterial blockages [6]. In the case of infectious diseases, such as COVID-19, detecting 
changes in lung texture and identifying areas of inflammation are crucial for assessing 
disease progression and potential complications [4, 7 – 9]. 

However, traditional edge detection techniques often encounter limitations when 
applied to medical imaging [10]. Conventional methods such as the Sobel, Prewitt, and 
Canny detectors rely on gradient-based approaches to identify areas of high intensity contrast 
[11 – 13]. These methods, while effective in general imaging tasks, may not perform well 
with medical images due to several inherent challenges: 

 Noise Sensitivity: Medical images are often compromised by various types of noise 
and artifacts resulting from the imaging process itself, such as scatter in computed 
tomography (CT) or speckle noise in ultrasound images [14]. Gradient-based edge 
detectors, which rely on intensity discontinuities, can mistakenly identify noise as 
edges, leading to false positives and inaccuracies [15]. 

 Variability in Image Contrast: Unlike standard photographs, medical images can 
exhibit highly variable contrast levels [16]. Different tissues and structures may have 
subtle differences in intensity, which conventional edge detection methods might fail 
to accurately capture, especially when the contrast is low [17]. 

 Complexity and Ambiguity of Medical Structures: Medical structures can be complex 
and their edges often ambiguous, not necessarily characterized by clear intensity 
gradients [18]. Pathological changes, such as diffuse tumors or inflammatory 
processes like those seen in COVID-19 pneumonia, often result in edges that are 
difficult to define precisely using traditional methods [19]. 

 Scale Dependency: The appearance of edges can vary significantly depending on the 
scale of observation [20]. Traditional methods do not inherently account for multi- 
scale representations, which can lead to either missing fine details when focusing on 
larger scales or getting overwhelmed by details at smaller scales [21]. 

To address these limitations, recent advancements have focused on developing more 
robust edge detection techniques that can adapt to the specific challenges presented by 
medical imaging. Techniques leveraging advanced computational methods such as machine 
learning and deep learning have shown promise. These methods can learn from large datasets 
of annotated images to better understand the characteristics of edges specific to different 
tissues and pathologies. 

Deep learning models, particularly Convolutional Neural Networks (CNNs), have 
been at the forefront of this transformation [22]. Unlike traditional gradient-based techniques, 
CNNs can learn to identify edges based on a broader context within the image, making them 
less sensitive to noise and capable of recognizing edges that are difficult to discern due to low 
contrast or complex morphology [23]. Moreover, CNNs can be trained to operate at multiple 
scales simultaneously, enhancing their ability to accurately detect edges across a range of 
structural sizes [24]. 

Graph-based methods represent another frontier in edge detection technology. These 
methods model the image as a graph where pixels or superpixels serve as nodes, and edge 
weights between them reflect the likelihood of a boundary. Such approaches are inherently 
more flexible and can incorporate both local and global image features, potentially offering 
superior performance in complex scenarios like medical image analysis. 
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2. Methodology 

2.1 Enhanced Graph Representation 

In advancing the graph representation of images for edge detection, the method 
introduces a refined approach that integrates dynamic adaptive thresholding and node feature 
augmentation. This innovative representation leverages the adaptive connectivity of pixels 
based on contextual and structural information, enhancing the graph’s capacity to encapsulate 
critical edge details necessary for accurate edge detection in complex medical images like 
COVID-19 CT scans. 

Dynamic Graph Structure: 

Instead of using a fixed adjacency based on physical proximity (8-connectivity), the 
graph G = (V, E) is constructed where each vertex 𝑣𝑖 ∈ 𝑉 still corresponds to a pixel in the 
image, but the edges E are formed based on an adaptive neighborhood system. This system 
dynamically adjusts the connectivity of each pixel based on the local variance of intensity, 
which is indicative of potential edges or transitions in tissue density. 

Adaptive Edge Weight Formulation: 

The edge weights between nodes are not solely dependent on intensity differences but 
are further modulated by a contextual similarity index that incorporates texture and pattern 
similarities. The weight 𝑤𝑖j between nodes i and j is defined using a novel adaptive 
formulation as given in the equaiton 1: 

 

𝑤𝑖j 
    

= exp (−β ( )) .......................................... (1) 
1+σ(𝐼𝑖,𝐼j) 

where 𝐼𝑖 and 𝐼j are the intensity values, σ(𝐼𝑖, 𝐼j) is a similarity function assessing textural and 
contextual congruence between the pixels, and β is a parameter that adjusts the sensitivity of 
the edge weight to these combined factors. 

Graph Neural Processing: 

The graph representation is processed using a novel class of Graph Neural Networks 
(GNNs) designed to work with dynamically weighted and structured graphs. The network 
incorporates layers of Adaptive Graph Convolutional Networks (AGCNs) that can process 
nodes with varying degrees of connectivity and edge weights. Each AGCN layer updates 
node features by considering both the feature similarities and the dynamic structure of the 
graph in the equation 2: 

 
(𝑙+1) (𝑙) ⌃−1 ⌃−1  

(𝑙
) 

 
(𝑙) 

𝐻 = σ (𝐵 𝐷 2𝐴^𝐷 2𝐻 𝑊 ) ........................................ (2) 

where 𝐻(𝑙) is the node feature matrix at layer l, 𝑊(𝑙) is the weight matrix for the layer, 𝐴^ is 
the adaptive adjacency matrix, 𝐷̂ is the degree matrix of 𝐴^, 𝐵(𝑙) is a layer-specific modulation 
matrix that adapts the influence of neighboring nodes based on the current node state, and σ 
is a nonlinear activation function. 

Multiscale Integration: 

The adaptive graph structure and processing are applied across multiple scales using a 
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pyramid-like approach, where each level of the pyramid processes a different resolution of 
the graph. This multiscale processing enables the capture of both macroscopic and 
microscopic edge features, crucial for delineating detailed structures within medical images. 
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This enhanced graph representation and processing framework is designed to be 
robust against the common challenges in medical imaging, such as noise, variability in lesion 
appearance, and ambiguous boundaries, thereby providing a powerful tool for edge detection 
in medical diagnostic imaging. 

3.2 Graph-Based Learning 

The next step is to introduce our Graph-Based Learning methodology for advanced 
edge detection in medical images by utilizing the adaptive graph structure. This approach 
involves deploying a specialized GNN that is capable of dealing with the dynamically 
weighted and structured graph, focusing on enhancing the detection capabilities through 
learned graph features. 

Graph Neural Network Architecture: 

The core of our graph-based learning is a tailored version of Graph Convolutional 
Networks (GCNs), adjusted for the dynamic and adaptive nature of graphs. The GCNs in our 
architecture are modified to utilize the adaptive edge weights and the variable connectivity 
patterns defined in the enhanced graph construction phase. 

Adaptive Graph Convolutional Layer: 

Each layer in our GNN, referred to as an Adaptive Graph Convolutional Layer 
(AGCL), updates the features of each node based on both the direct features of the node and 
the features of its neighbors, adjusted by the adaptive edge weights. The feature update at 
each layer l can be mathematically represented as: 

 
(𝑙+1) 

−̃
1 

−̃
1 

 
(𝑙
) 

 
(𝑙) 

 
where: 

𝐻 = σ (𝐷 2𝐴˜
𝐷 

2𝐻 𝑊 ) .............................................. (3) 

 𝐻(𝑙) is the matrix of node features at layer l, 

 𝑊(𝑙) is the weight matrix associated with layer l, 

 𝐴˜ = 𝐴 + 𝐼 represents the adaptive adjacency matrix with self-loops (where A 
is the adjacency matrix and I is the identity matrix), 

 𝐷̃ is the degree matrix of 𝐴˜, 

 σ denotes the nonlinear activation function, such as ReLU. 

Feature Learning and Edge Identification: 

The learning process within the AGCL is designed to iteratively refine the node 
features to better represent the underlying edge characteristics of the image. This iterative 
refinement enhances the network’s ability to distinguish between edge and non-edge regions 
effectively. The layers are stacked to allow deeper feature integration across the network, 
facilitating a robust feature set that captures both local and global contextual details. 

Learning Objective: 

The objective function for training the GNN is designed to minimize the difference 
between the predicted edge map and the ground truth, provided by expert annotations in the 
case of medical images. This is typically achieved through a loss function such as cross- 
entropy for binary classification tasks: 
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Loss = − ∑𝑖∈𝑁[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)] ............................................... (5) 
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𝐴 𝐷 

where 𝑦𝑖 is the ground truth label (edge or not edge) and 𝑝𝑖 is the predicted probability of 
being an edge for node i, and N is the total number of nodes. 

Training and Optimization: 

The GNN is trained using backpropagation through time (BPTT), a common 
technique for training neural networks on graph-structured data. The training process adjusts 
the weights 𝑊(𝑙) in each AGCL to minimize the loss, using optimizers like Adam or SGD 
with learning rate adjustments to enhance convergence. 

This graph-based learning framework, coupled with the adaptive graph structure, 
provides a powerful approach for detecting subtle and significant edges in medical images, 
particularly enhancing the ability to handle the complexities presented by COVID-19 CT 
images. 

3.3 Multi-Scale Analysis 

To capture both global structures and fine details within COVID-19 CT images 
effectively, the proposed graph-based learning methodology incorporates a Multi-Scale 
Analysis (MSA) approach. This multi-scale approach allows the model to process 
information at various levels of detail, from coarse to fine, enhancing the detection of edges 
that vary significantly in scale and visibility. 

Implementation of Multi-Scale Graphs: 

The multi-scale analysis begins by constructing graph representations at different 
scales. Each scale s of the graph 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠) represents the image with a varying level of 
detail: 

1. Coarse Scale: Larger regions are considered, with reduced pixel resolution, to capture 
broad features. 

2. Medium Scale: Standard resolution to balance between global and local features. 

3. Fine Scale: High resolution to capture detailed features at the pixel level. 
Scale-Specific Graph Construction: 
Each scale has its respective graph constructed similarly to the base graph but with 
adjustments to the node and edge definitions to suit the scale: 

𝑉𝑠 = v𝑖,𝑠 |𝑖 ∈ 𝑁𝑠 ................................................. (6) 

𝐸𝑠 = {𝑣𝑖,𝑠, 𝑣j,𝑠} | d(i, j) < θ𝑠 .......................................... (7) 

where 𝑁𝑠 represents the number of nodes at scale s, and θ𝑠 is the adjacency threshold that 
varies with scale to define the connectivity differently at each level. 

Adaptive Graph Convolution Across Scales: 

To process these multi-scale graphs, the graph neural network employs adaptive graph 
convolutions that are tuned to operate effectively at each scale. The convolution at each scale 
s is defined as: 

−1̃ ˜̃1 

(𝑙+1
) 
𝑠 

 
 

= σ (𝐷𝑠 
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−
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𝑠  𝑠 

(𝑙
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(𝑙
) 
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) ........................................... (8) 
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𝑠 

where 𝐻(𝑙) are the features at layer l for scale s, 𝐴  is the adjacency matrix with self-loops, 𝐷  

𝑠 𝑠 𝑠 
is the degree matrix, and 𝑊(𝑙) are the trainable weights specific to scale s. 
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𝑠 

Feature Fusion Across Scales: 

After processing each scale independently, the next step is to integrate the learned features 
across scales. This integration is crucial for leveraging both global and local information: 

𝐻(𝑙+1) = ∑ 𝘢 

𝐻
(𝑙+1) 

. ............. (9) 

𝑠∈𝑆  𝑠  𝑠 

 
where 𝘢𝑠 are learnable parameters that weight the importance of each scale’s features during 
the fusion process. The sum ensures that information from all scales contributes to the final 
feature representation. 

Optimization for Multi-Scale Integration: 

(𝑙) 
The learning of scale weights 𝘢𝑠 and convolution weights 𝑊 is jointly optimized 

through a loss function designed to minimize errors in edge detection across all scales, 
enhancing the model’s ability to generalize across different image resolutions and edge types. 

The multi-scale analysis approach provides a comprehensive framework for edge 
detection in medical images, where variations in lesion size and clarity can significantly 
affect diagnostic accuracy. This methodology allows the proposed system to adaptively focus 
on relevant features at appropriate scales, thereby improving the robustness and effectiveness 
of edge detection in complex medical imaging. 

3.4 Edge Selection and Fusion 
 

To effectively utilize the multi-scale features generated by graph-based learning in our novel 
edge detection framework, the study introduce a sophisticated Edge Selection and Fusion 
process. This phase is crucial for synthesizing the information extracted at various scales into 
a coherent edge map that accurately represents the true edges in the medical images. 

 
Thresholding and Edge Selection: 

After processing the image at multiple scales, each node in the graph has associated features 
that describe its likelihood of being part of an edge. To decide whether a node represents an 
edge, apply a dynamic thresholding method: 

𝐸𝑖 = {𝑖𝑓𝑝𝑖 > τ(𝑓𝑖, 𝒩𝒾) 

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. ............. (10) 

where 𝐸𝑖 indicates the presence of an edge at node i, 𝑝𝑖 is the probability of node i being an 
edge (derived from the final layer of the graph neural network), 𝑓𝑖 represents the feature 
vector at node 𝑖, 𝒩𝒾 is the set of neighbors of node i, and τ is a dynamically calculated 
threshold based on local image statistics, such as the variance or mean intensity within the 
neighborhood 𝒩𝒾. 

Fusion of Multi-Scale Edge Information: 

The edges detected at each scale are combined to form a comprehensive edge map. This 
fusion process takes into account the varying levels of detail captured at each scale, 
integrating them through a weighted sum: 

𝐸 = ∑𝑠∈𝑆 ω𝑠 · 𝐸𝑠 ............................................... (11) 
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where E is the final edge map, 𝐸𝑠 is the edge map at scale s, ω𝑠 are the weights assigned to 
each scale, optimized during training to balance the contribution of each scale based on its 
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2 

relevance and accuracy. The weights ω𝑠 are learned through the training process to ensure 
optimal integration of details from all scales. 

Optimization of Fusion Weights: 

The weights ω𝑠 are optimized using a loss function that not only encourages accurate 
edge detection but also promotes consistency across scales. This loss function can be 
formulated as: 

Loss = ∑𝑖∈𝑉(𝑦𝑖 − ∑𝑠∈𝑆 ω𝑠 · 𝐸𝑠,𝑖) + λ|ω|2 ............................................ (12) 

where 𝑦𝑖 is the ground truth label for node i (1 if edge, 0 otherwise), 𝐸𝑠,𝑖 is the edge 
prediction at scale s for node i, and λ is a regularization parameter that prevents overfitting by 
penalizing large weights. 

The algorithm of the proposed work, given below: 

 
4. Experimental Setup 

Datasets 

The research utilizes the “COVID-19 CT lung and infection segmentation dataset,” a publicly 
available dataset specifically curated for facilitating the development and testing of image 
segmentation models focused on identifying COVID-19 related anomalies in CT scans [25]. 
The dataset comprises CT lung scans from different patients, annotated by experienced 
radiologists to mark the regions infected by COVID-19. Figure 1 represents the examples of 
dataset. This dataset is particularly valuable because it includes: 

 Variability in Infection Presentation: The scans reflect a range of infection severities, 
from mild to severe, providing a comprehensive testbed for assessing the robustness 
of the edge detection algorithm across diverse clinical cases. 

 Multiple Annotations: Each scan includes detailed annotations of the left lung, right 
lung, and infection areas, allowing for precise evaluation of the model’s ability to 
detect and delineate complex anatomical and pathological structures. 

 High-Resolution Images: The dataset consists of high-resolution images, which are 
essential for evaluating the performance of the multi-scale analysis component of the 
proposed edge detection method. 

These features make the dataset an ideal choice for testing the effectiveness of the 
new graph-based, multi-scale edge detection technique, ensuring that the findings are relevant 
and applicable to real-world medical diagnostics. 
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Figure 1. Illustrative examples of COVID-19 CT images and their corresponding 
segmentation masks 

Experimental Parameters 

The configuration of the graph-based, multi-scale edge detection model involves 
several key parameters that are optimized for performance. The following table provides an 
overview of these settings: 

Table 1. Parameter Settings 
 

Parameter Description Value 

Learning Rate Initial learning rate for the optimizer 0.001 

Epochs Number of full training cycles 20 

Batch Size Number of samples processed before model 
update 

32 

Optimizer Method to update network weights Adam 

Loss Function Objective function used for training Cross-Entropy Loss 

𝘢 Scaling parameter for edge weight calculation 0.9 

β Sensitivity of edge weights to pixel differences 0.5 

Regularization λ Controls overfitting by penalizing large weights 0.0001 

Multi-Scale 
Weights 

Weights for combining multi-scale features Learned during 
training 

Hardware and Software 

 GPU: NVIDIA GeForce RTX 4070 Ti. 

 Framework: PyTorch 1.8. 
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 Operating System: Ubuntu 24.04. 
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Training Procedure 

The training process will monitor validation loss to adjust learning rates and prevent 
overfitting. Data augmentation techniques such as rotation, scaling, and elastic deformation 
used to the training data to enhance model robustness and generalization. 

5. Results 

The following table 2 presents a comparative analysis of the proposed adaptive graph- 
based multi-scale edge detection model against existing methods like Sobel + GCN, Canny + 
GCN, and the CDSE-Unet [23]. This comparison focuses on key metrics such as Accuracy, 
Precision, Recall, and the Dice Similarity Coefficient (DSC), which are critical for evaluating 
the performance of edge detection algorithms in medical imaging, specifically COVID-19 CT 
scans. Figure 2 visualises the comparison of various edge detection models to establish how 
efficient they are in CT scans pertaining to COVID-19. This visualization provides a clear 
distinction in the quality of edge delineation between the models. Proposed AGCN Model 
gives a far better edge detection than the others; the output is very clear, and close to the 
actual label; unlike the output given by Sobel + GCN, Canny + GCN, and CDSE-UNet. 
These latter models which are to some extent equally useful are either coarse or fail to 
provide sufficient details or are incapable of forecasting higher order structures in similar 
regions suggesting limitations in managing the richness and sophistication of medical 
imaging data. The visualization has not only shown that AGCN model is up to the task but 
also has exposed major deficiency of traditional methodologies employed in medical image 
processing to yield more objective and accurate results. 

Table 2. Comparison of Edge Detection Model Performances 
 

Model Accuracy Precision Recall DSC 

Proposed AGCN 
Model 

0.995 0.920 0.970 0.945 

Sobel + GCN 0.980 0.870 0.950 0.910 

Canny + GCN 0.985 0.890 0.960 0.925 

CDSE-UNet 0.993 0.813 0.965 0.910 

Discussion 

The proposed model shows a higher accuracy (0.995) compared to other methods, 
indicating its superior capability in correctly identifying edge pixels across various image 
regions. At 0.920, the precision of the proposed model is significantly better than that of the 
base CDSE-UNet model and other GCN combined techniques. This suggests that the 
proposed model is more effective at reducing false positives in edge detection. With a recall 
of 0.970, the proposed model efficiently identifies actual edge pixels, surpassing the recall 
capabilities of Sobel + GCN and Canny + GCN. The DSC of the proposed model is the 
highest at 0.945, indicating a strong overlap between the predicted edges and the ground 
truth, which is critical for medical image analysis where precise edge detection can 
significantly influence diagnostic outcomes. Figure 3 shows a side-by-side comparison of 
various edge detection models, highlighting the superior performance of the Proposed AGCN 
Model across all metrics. Figure 4 depicts a steady decline in both training and validation loss 
as the number of epochs increases, indicating effective learning and generalization by the 
model. Figure 5 illustrates a consistent improvement in both training and validation accuracy, 
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with training accuracy always remaining above validation accuracy, showcasing the model's 
increasing proficiency in edge detection over time. 

 

 

Figure 2. Edge Detection Performance on COVID-19 CT Images: Comparative Visualization 
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Figure 3. Performance Metrics Comparison Across Edge Detection Models 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Training and Validation Loss Over 20 Epochs 
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Figure 5. Training and Validation Accuracy Over 20 Epochs 

4. Conclusion 

The research presented in this paper introduces a novel adaptive graph-based multi- 
scale edge detection model, specifically designed for enhancing edge detection in medical 
images, with a focus on COVID-19 CT scans. The proposed model integrates adaptive graph 
convolutional networks (AGCNs) with a dynamic, multi-scale analysis approach, delivering 
superior performance in accurately identifying and delineating edges compared to traditional 
methods and existing graph-based techniques. The experimental results demonstrate that the 
proposed model achieves significantly higher accuracy, precision, recall, and DSC compared 
to baseline methods such as Sobel + GCN, Canny + GCN, and the previously established 
CDSE-UNet. These findings underscore the effectiveness of leveraging adaptive, scale-aware 
graph processing in complex medical imaging scenarios, where accurate edge detection is 
critical for reliable diagnosis and assessment. The implementation of AGCNs allows for the 
nuanced handling of image data, adapting to variations in image quality and pathological 
features, which is particularly crucial in the heterogeneous manifestations of diseases like 
COVID-19. This adaptability, combined with the ability to process information across 
multiple scales, equips the model to handle the inherent challenges in medical imaging, such 
as noise, variability in lesion appearance, and ambiguous boundaries. Future work will focus 
on refining the computational efficiency of the model, exploring its application to other 
imaging modalities and diseases, and integrating it into clinical workflows where it can aid in 
the rapid and accurate interpretation of medical images. 
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