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ABSTACT:  
Adding a saturating treatment logistic growth rate under both deterministic and stochastic 
frameworks is suggested as an addition to the conventional SIR (Susceptible-Infected-Recovered) 
epidemic model in this research. Treatment efficacy is constrained in real-world situations, 
especially when the number of infected persons is considerable, contrary to the idealized linear 
treatment rate assumed by the classic SIR model. We propose a continuously differentiable 
treatment function to account for this, which characterizes the sluggish reaction of medical 
therapy when the healthcare system is overloaded. In this model, the saturation effect is 
represented by a function that shows how the treatment rate grows at first, but then approaches a 
maximum limit when resources are limited. To account for the dynamic between susceptible and 
infected people, the model uses a bilinear incidence rate. To mimic the declining rewards of 
medical treatments as the illness spreads, the availability of therapy modifies this rate, reaching 
saturation at higher infection levels. Derivation of the fundamental reproduction number (R₀) 
provides a crucial starting point for comprehending the epidemic's spread. The likelihood of the 
illness spreading increases when R₀ > 1, and it decreases with decreasing values, suggesting that 
the sickness will ultimately die out. First, for the deterministic model, we study the local and 
global stability of the disease-free and endemic equilibrium points. By examining the effects of 
changing the treatment function and other model parameters on epidemic control, the stability 
analysis sheds light on this topic. 
We include the inherent uncertainties and random fluctuations in real-world epidemic dynamics 
into the stochastic model. Variations in treatment efficacy, healthcare capacity, and external 
variables like environmental changes or governmental initiatives are all examples of what might 
cause these oscillations. We demonstrate that, subject to certain constraints relating to the strength 
of the stochastic perturbations, the endemic equilibrium is stable on a global scale. By shedding 
light on how the system acts when faced with ambiguity, our study demonstrates that the epidemic 
might stabilise into an endemic state, even in the face of random oscillations. At last, numerical 
examples are given to back up the analytical results. By simulating the effects of treatment 
saturation and stochastic disease dynamics on epidemic development, the simulations reveal the 
model's practical consequences. More accurate forecasts of epidemic outcomes, especially in 
resource-limited situations, are produced by combining treatment saturation with stochastic 
impacts, as shown by the numerical findings. In conclusion, our research offers a more refined 
paradigm for simulating epidemic breakouts in the face of constrained healthcare resources and 
random disruptions. When it comes to dealing with large-scale epidemics in real-world situations, 
where healthcare facilities are often overloaded, the results have significant implications for 
public health strategy.  
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   INTRODUCTION:  To comprehend the dynamics of infectious illnesses and to create efficient 
methods for controlling them, the study of epidemic models is essential. Disease transmission in 
populations may be anticipated with the use of mathematical models, such as the SIR 
(Susceptible-Infected-Recovered) model. But, the limits of real-world healthcare systems are 
rarely reflected in the traditional SIR model, which often assumes constant treatment rates. 
Medical resources, healthcare infrastructure, and response times all have a role in limiting therapy 
efficacy. In order to better depict the dynamics of disease propagation, particularly in cases of 
resource overload, it is crucial to include saturation effects in treatment rates. In most cases, the 
number of sick people is used to simulate the treatment rate, with the idea being that the rate of 
recovery grows as the number of infected people does, but that there is a maximum threshold that 
healthcare systems can handle. The epidemic model becomes nonlinear due to this saturation 
treatment rate; this represents the reality that the healthcare system is overwhelmed by the 
increasing number of sick people, and treatment efficacy decreases as a result. More accurate 
epidemic dynamics modelling is possible with the addition of a saturation treatment rate, which 
is particularly useful in settings with limited resources. The deterministic SIR model can provide 
light on how an epidemic might unfold in a perfect environment, but it can't handle the 
uncertainties and random fluctuations that are inevitable in the actual world. Conditions in the 
environment, variations in healthcare accessibility, and changes in human behaviour are 
examples of external variables that might impact the onset of epidemics. It is required to add 
stochastic impacts into the model in order to account for these uncertainties. To better understand 
how epidemics really play out in the real world, stochastic models include random perturbations 
to represent the unpredictable dynamics of epidemics. Adding stochastic effects and a saturation 
treatment rate to the standard SIR epidemic model is what we suggest in this study. To account 
for the fact that the saturation of the treatment rate is proportional to the number of infected 
persons, the model is constructed by include a logistic function. As the number of infected 
individuals grows, this function shows how healthcare services are limited and how treatment 
effectiveness diminishes. To account for the unpredictability of the actual world, we include 
random fluctuations in treatment efficacy, environmental variables, and other stochastic 
components as white noise perturbations in the model. Adding the saturation treatment rate makes 
the model more grounded in reality by considering the fact that healthcare systems have a 
maximum capacity to serve patients simultaneously. To comprehend how random changes in 
treatment or environmental factors might impact the development of the illness, it is essential to 
account for the unpredictable character of epidemic management, and the stochastic component 
does just that. This research aims to determine the model's fundamental reproduction number 
(R₀), examine the stability of the disease-free and endemic equilibrium points, and evaluate the 
global stability of the system when random perturbations are applied. In epidemiology, the basic 
reproduction number is an important threshold since it indicates the spread or extinction of an 
epidemic. The propensity for the illness to spread is indicated by a R₀ > 1, however its ultimate 
eradication is predicted when R₀ < 1. Both the deterministic and stochastic versions of the model's 
stability of the equilibrium points are examined. We start with the deterministic model, which 
describes the system's behaviour in an idealized setting, and then we go on to the stochastic 
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model, which incorporates random disturbances to represent the unpredictability in the actual 
world. We verify our analytical results with numerical simulations and investigate the 
consequences of adding stochastic factors and treatment saturation to epidemic models. Public 
health planning and epidemic management may benefit greatly from this study's findings. The 
evolution of epidemics in resource-constrained situations may be better understood by taking 
treatment restrictions and stochastic impacts into account. Policies and tactics for epidemic 
control may be informed by this knowledge, especially in settings when healthcare resources are 
limited or unpredictable. In light of our results, it is clear that dynamic models are required to 
capture the realities of treatment capacity saturation and the intrinsic unpredictability of epidemic 
dynamics in the actual world. In assumption, this work offers a thorough method for simulating 
the dynamics of epidemic outbreaks in settings with limited treatment capacity and substantial 
influence of random fluctuations. The suggested model sheds light on the ways in which treatment 
saturation and random factors impact the transmission of infectious illnesses, and it also gives a 
more practical framework for comprehending the development of epidemics. Future epidemics 
may be better controlled and managed with the use of public health initiatives that are based on 
the findings of this research.  
 1. MODEL FRAME WORK: In this section, we formulate an epidemic model for the spread 
of a general infectious disease. We split the total population N(t), into three distinct subclasses 
which are susceptible S(t), infectious I(t), and recovered R(t). The model can be represented by 
the following system of differential equations.   

 !"
!#
= 𝑟𝑆 $1 − "

$
' − %"&

'	)*&	
		− 𝜀𝑆	   

  !&
!#
= %"&

'	)*&	
		− (𝜀	 + 	𝜓	 + 𝜆	)𝐼	 − +	&

'	),	&
                                                          (1)                                                                                   

 !&
!#
= 𝜓	𝐼	 + +	&

'	),	&
− 	𝜀	𝑅      

With the initial conditions     
                             𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0.	  
Here r is the intrinsic growth rate of susceptible population, c denotes the carrying capacity of 
the country ignoring the infection and recovered persons. 𝜃 is the transmission rate, 𝛿	 is the 
saturation factor, 𝜖	is the natural death rate, 	λ	 is the disease – induced death rate,  𝜓 represents 
the recovered rate, 𝜁 is the Treatment rate, 𝝌 is the Saturation in treatment. The saturated 
incidence rate  %"&

'	)*&	
		  was employed by caspase. where 𝜃𝑆𝐼  measures the infection force of the 

disease and  &
'	)*&	

		 measures the inhibition effect from the behavioral change of the susceptible 
individuals when their number increases or as a result of the crowding effect of the infective 
individual. It is assumed in this paper that 𝜁 is negative constant and other parameters are 
positive constant.    
2. EQUILIBRIUM POINTS AND THEIR STABILITY     
   In this section we show the stability analysis. The disease – free equilibrium (DFE) point is   
 𝐸-		 =	$𝐶 $1 −

.
/
' , 0'    

To find the endemic equilibrium (EE) point  𝐸∗ =	(𝑆∗, 𝐼∗) we set the right-hand side of the 
system (1) equal to zero to get    
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   𝑆∗ =	
('	)	*	&∗)3(.	)4)5	)	)	 "

#	%	&	'∗6

%
 , where 𝐼∗ is the positive solution of   

    𝐴'	𝐼 ∗7	+ 𝐴8	𝐼 ∗8	+ 𝐴7	𝐼 ∗ 	+	𝐴9 	= 	0   
Here   𝐴' =	−𝑟	𝐶	𝛿8(𝜀	 + 𝜓	 + 	𝜆	 + 𝜁),      
 𝐴8 = 	𝑟	𝛿(𝜀	 + 𝜓	 + 	𝜆	 + 𝜁) − 	𝛿𝜀𝜃 − 	𝑟	𝐶	𝛿(𝜀	 + 𝜓	 + 	𝜆	 + 𝜁) − 𝜃     
  𝐴7 = 	𝑟	(𝜀	 + 𝜓	 + 	𝜆	 + 𝜁) − 	𝜀𝜃 − 	𝑟	𝐶	(𝜀	 + 𝜓	 + 	𝜆	 + 𝜁),           
   𝐴9 = 	𝑟	(𝜀	 + 𝜓	 + 	𝜆	) − 	𝜀𝜃 − 	𝑟	𝐶	(𝜀	 + 𝜓	 + 	𝜆	),                                          
 
3. BASIC REPRODUCTION NUMBER    
   To find the reproduction number using next generation method.       
Let system (1) can be written as     
New infection term        𝐹 = %	*	&

')*	&
 

Transform                    𝑉 = (𝜀	 + 	𝜓	 + 𝜆)𝐼	 + +	&
'),	&

    

The Jacobian matrix of F and V at the DFE  𝐸-		 =	$𝐶 $1 −
.
/
' , 0'    

 are respectively,   

   𝐹:;< = 𝜃𝐶 $1 − .
/
',    𝑉:;< = 		(𝜀	 + 𝜓	 + 	𝜆	 + 𝜁) 

The Next generation matrix is     K = ;()*
=()*

 = 
%$>'?	+,@		

(.	)4	)	5	)+)
  which is the spectral radius and it is 

equal to model’s basic reproduction number is  

           𝑅- =  
%$>	'	?		+,@		

(.	)4	)	5	)+)
                                                                                    (2) 

 Theorem1. The system (1) has  
(I) Disease – free equilibrium, if 𝑅- ≤ 1 and   
(II)  If 𝑅- > 1, then there is a unique positive equilibrium called the endemic equilibrium.   
      New we shall study the local stability of each equilibrium.   
     The Jacobian matrix of (1) at 𝐸- is     

 𝐽<- 	= D	
?/	"∗

$
−𝜃	𝑆∗

0 		𝜃	𝑆∗ 	− (𝜀	 + 	𝜓	 + 𝜆	 + 𝜁)	
E 

The characteristic equation of above matrix is   
 $𝜆 + /	"∗

$
	' (𝜆 − 	𝜃	𝑆∗ + (𝜀	 + 	𝜓	 + 𝜆	 + 𝜁) = 0   

The roots are  𝜆'= - (𝑟 − 𝜀),  𝜆8 = 𝜃𝑆∗- (𝜀 + 	𝜓 + 	𝜆 + 	𝜁) then the system is stable    
if  𝜃𝑆∗- (𝜀 + 	𝜓 + 	𝜆 + 	𝜁) < 0     

   therefore    
%$>'?	+,@		

(.	)4	)	5	)+)
< 1                                                                                               

clearly, if 𝑅- < 0, then the disease- free equilibrium is a locally asymptotically stable.   
The Jacobian matrix of (1)   at 	𝐸∗ =	 (𝑆∗, 𝐼∗)  is      
         

 𝐽<∗ 	= G

?/	"∗

$
?%	"∗

('	)*	&∗).

%	&∗

('	)*	&∗)
%	"∗

('	)*	&∗).
	− (𝜀	 + 	𝜓	 + 𝜆	) − +

('	),		&∗).

H	   
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that can be rewritten as   

        𝐽<∗ 	= G

?/	"∗

$
?%	"∗

('	)*	&∗).

%	&∗

('	)*	&∗)
+	&∗

('	),	&∗).
	− %	*	&∗"∗			

('	)*		&∗).

H	      

  
the characteristic equation of above matrix is    
	   𝜆8 	+ 	𝑃'𝜆 + 𝑃8 = 0                                                                                      (3) 
                             
 where     
 𝑃' = (𝜀 − 𝑟) + 8/	"∗

$
+ %	"∗

')*	&∗
− +	&∗

('	),	&∗).
+ %	*	&∗"∗			

('	)*		&∗).
  

     𝑃8 = $8/	"
∗

$
+ %	"∗

')*	&∗
	𝜀 − 𝑟' $− +	&∗

('	),	&∗).
+ %	*	&∗"∗			

('	)*		&∗).
' +	 	%.&∗"∗

('	)*	&∗)/
	     

 
Since all coefficients 𝑃'	,𝑃8 will be positive only if 𝑅- > 1, therefore by Routh- Hurwitz criteria 
all roots of the equation (3) have negative real part. Hence the endemic equilibrium point   𝐸∗ =
(𝑆∗, 𝐼∗) is a locally asymptotically stable.    
 4. GLOBAL STABILITY    
 To show that the proposed system is globally asymptotically stable, we use the Lyapunov 
function theory for the disease – free equilibrium. we present the global stability of the disease- 
free equilibrium.    
Theorem 2.  If 𝑅- ≤ 1,	then the disease- free equilibrium 𝐸- of the system is globally   
                     asymptotically stable.   
Proof:  To establish the global stability of the disease- free equilibrium 𝐸-, we construct the   
             following Lyapunov function.    
                                        𝐿(𝑆, 𝐼) = 𝐼(𝑡) 
      calculating the time derivative of V along the solution of the proposed system, we obtain   
                   !B

!#
= !&

!#
 

                        =   %"&
'	)*&	

		− (𝜀	 + 	𝜓	 + 𝜆	)𝐼	 − +	&
'	),	&

    

                          
                     =  (𝜃𝐶 $1 − .

/
' − (𝜀	 + 	𝜓	 + 𝜆	))𝐼	                                                              

                       = 
%$>'?	+,@		

(.	)4	)	5	)+)
− 1 

                         
                      =  (𝑅- − 1)𝐼 ≤ 0		 
          therefore       𝑅- < 0				 
If  𝑅- < 0		𝑡ℎ𝑒𝑛			𝐿C = 0, I = 0    
Hence by LaSalle’s invariance principle, the disease- free equilibrium 𝐸-, is globally 
asymptotically stable.  
5. STOCHASTIC STABITY OF THE MODEL AT POSITIVE EQUILIBRIUM   
 In this section, we investigate the dynamical behavior of the system (1). as follows      
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	 !"
!#
= 𝑟𝑆 $1 − "

$
' − %"&

'	)*&	
		− 𝜀𝑆 + 𝜎'(𝑆 − 𝑆∗)𝑑𝜁''	   

  !&
!#
= %"&

'	)*&	
		− (𝜀	 + 	𝜓	 + 𝜆	)𝐼	 − +	&

'	),	&
+ 𝜎'(𝐼 − 𝐼∗)𝑑𝜁'8                                    (4)                                            

where  𝜎',	𝜎8 are real constants and known   as the Intensities of environmental fluctuations and    
𝜁#D = 𝜁D(𝑡),  i = 1,2 are independent from each other standard Wiener processes.   
 
  The stochastic differential system (4) can be centered at its positive equilibrium 𝐸∗ with the 
change of variables    
    𝑢' = 𝑠 − 𝑠∗, 𝑢8 = 𝐼 − 𝐼∗ 
the linearized stochastic differential equations around  𝐸∗ take the form   
 𝑑𝑢(𝑡) = 𝑓T𝑢(𝑡)U𝑑𝑡 + 𝑔T𝑢(𝑡)U𝑑𝜁(𝑡)                                                                     (5) 
 where  𝑢(𝑡) = (𝑢'(𝑡)	, 𝑢8(𝑡))E 

	𝑓T𝑢(𝑡)U = 		 G

?/	"∗

$
?%	"∗

('	)*	&∗).

%	&∗

('	)*	&∗)
%	"∗

('	)*	&∗).
	− (𝜀	 + 	𝜓	 + 𝜆	) − +

('	),		&∗).

H	                             (6)         

and   𝑔(𝑢) = W𝜎'𝑢' 0
0 𝜎8𝑢8

X 

Let  𝑊(𝑡, 𝑢) defined on  [	0, +∞) × 𝑅8	) is a continuously differentiable function with respect 
to t and twice with respect to u.      
We define the differential operator L for a function  𝑊(𝑡, 𝑢)  by   

 𝐿𝑊(𝑡) = 	 FG(#,H)
F#

+ 𝑓E(𝑢) FG(#,H)
FH

+ '
8
𝑇𝑟 ^𝑔E(𝑢) F

.	G(#,H)
FH.

𝑔(𝑢)_																													(7)										                                  

  FG
FH
= 	𝑐𝑜𝑙 $FG

FH#
, FG
FH.

, FG
FH/
' 

 F
.G(#,H)
FH.

=	d F.G
FH0FH1

e i, j = 1,2 and  T  means transposition.     

It is easy to see that the stability of the endemic point of model (4) is equivalent to the stability 
of zero solution of (5).   
With reference to the book by Afanas’ ev et al. [9], the following theorem holds.   
Theorem 3.  Suppose there exists a function  𝑊(𝑡, 𝑢	) ∈ 𝐶',8([0, +∞) × 𝑅8, 𝑅)) satisfying the 
following inequalities.   
  𝐾'|𝑢|I ≤ 𝑊(𝑡, 𝑢) ≤ 𝑘8|𝑢|I 
    𝐿𝑊(𝑡, 𝑢) ≤ −𝑘7|𝑢|I 
where 𝐾' , 𝐾8	, 𝐾7 and P are positive constant.   
Then the trivial solution of (5) is exponentially P- stable for t ≥ 0.    

Theorem 4.  Assume that  𝜎'8 ≤ 2$/"
∗

$
' , 𝜎88 ≤ 2 $− %	"∗

('	)*	&∗).
+ (𝜀	 + 	𝜓	 + 𝜆	) +

+
('	),		&∗).

'				hold. then, the trivial solution of (5) is asymptotically mean square stable.   

 proof: Let as consider the Lyapunov function      
 𝑊(𝑢) = '

8
[𝑊'𝑢'8 +𝑊8𝑢88]                                                                                         (8) 

where 𝑊'	,𝑊8  are nonnegative constants to be chosen in the following. It is easy to check that 
inequalities (8) holds with p =2.  
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    𝐿𝑊(𝑢) =	 𝑊' ^$
?/"∗
$
'𝑢' 	−

%"∗
(')*&∗).

𝑢8_ 𝑢' +𝑊8 ^
%	&∗

('	)*	&∗)
𝑢' + $

%	"∗

('	)*	&∗).
	− (𝜀	 + 	𝜓	 + 𝜆	) −

+
('	),		&∗).

' 𝑢8_ 𝑢8   + '
8
𝑇𝑟 ^𝑔E(𝑢) F

.	G(#,H)
FH.

𝑔(𝑢)_														                        (9) 

with    '
8
𝑇𝑟 ^𝑔E(𝑢) F

.	G(#,H)
FH.

𝑔(𝑢)_		   =  '
8
[𝑊'𝜎'8𝑢'8 +	𝑊8𝜎88𝑢88]           

If we     choose   %	"∗

('	)*	&∗).
𝑊' =	

%	&∗

('	)*	&∗)
	𝑊8	   then         

 𝐿𝑊(𝑢) = − ^/"
∗

$
− '

8
𝜎'8_ 𝑤'𝑢'8 −	^

+
('	),		&∗).

+ (𝜀	 + 	𝜓	 + 𝜆	) − %	"∗

('	)*	&∗).
− '

8
𝜎88_𝑤8𝑢88 

 6. NUMERICAL SIMULATION              
In this section, we present the numerical simulations to illustrate our analytical results.  we 
consider the parameter values    
r = 0.8, C = 100, 𝜃 = 0.8, 𝛿 = 0.1, 𝜀 = 0.05, 𝜓 = 0.2, 𝜆 = 0.1, 𝜉 = 0.3, 𝜒 = 0.1    
 In this case 𝑅- = 115.384615>1, 𝜎'8 = 0.0001<1, 𝜎88 = 0.0016<1  
  

 
Fig 1                                                                           Fig 2 
   
 

   
Fig 3                                                                    Fig 4                   
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Fig 5       
 Fig1 and Fig2 represent deterministic and phase portrait of the system (1) for the above 
parameter values.    
Fig. (3-5) represent stochastic trajectories of the system (4).     
In Fig 3 the solutions of model (1) will be oscillating slightly around the endemic point E* of 
the model (1).  
  
   7.Conclusion  
Here, we provide a SIR epidemic model with logistic growth and saturation treatment rate 
integration. A deterministic and a stochastic analysis of the model is carried out, taking into 
consideration white noise disturbances near the endemic equilibrium state. The fundamental 
reproduction number (R₀), which changes with the parameter values, forms the basis of the study. 
The illness will finally disappear when the disease-free equilibrium is determined to be locally 
stable, which occurs when R₀ < 1. On the other hand, there is an endemic equilibrium that is 
locally stable when R₀ > 1, which means that the illness may survive in the population. 
Even when random disturbances are present, our model shows that the stochastic version is 
globally asymptotically stable, which means that the system will achieve a stable state given 
suitable circumstances. Our numerical simulations back up the analytical conclusions, therefore 
our theoretical findings are validated. The results of these simulations demonstrate that the 
mathematical model is valid and reliable; they show that the model can properly depict the 
epidemic's dynamics under both random and predictable conditions. 
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