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ABSTRACT: The rapid growth of software scale and complexity, a large number of bug reports 
are submitted to the bug tracking system. In order to speed up defect repair, these reports need to 
be accurately classified so that they can be sent to the appropriate developers. Software fault 
prediction is a vital and helpful technique for boosting the quality and dependability of software. 
There exists the prospective to enhance project management by proactively estimating 
prospective release delays and implementing cost-effective measures to boost software quality. 
The subsets of queries extracted and then each model was analyzed how it deals with specific 
group of queries. The aim is to build a tool that automatically classifies software bugs according 
to the severity and priority of the bugs and makes predictions based on the most representative 
features and bug report text. We present a machine learning based solution for the bug assignment 
problem. We build component classifiers using a multi-layer Neural Network based on features 
that were learned from data directly. A hierarchical classification framework is proposed to 
address the mixed label problem and improve the prediction accuracy. The features are used K-
Nearest Neighbor, Naive Bayes, Logistic Regression, Support Vector Machine and Random 
Forest) show that our proposed method achieves better performance The implementation of this 
study makes use of methods from AI, along with data mining, and Machine Learning, along with 
statistical algorithms, and also modeling. Prediction models can be of assistance in maximizing 
all of the resources needed for the research. 
 
INDEX TERMS Natural Language Processing, Machine comprehension, Deep learnin. Machine 
Learning, ML, Software Bug, Bug Priority, Bug Detection, Software Security. 
1. INTRODUCTION  
As more and more features and functionalities are added to a software system it is inevitable that 
software bugs will emerge. To fix them timely, bugs have to be assigned to the right developers 
[1]. A software bug is a failure in the program which causes unexpected or unwanted outputs is 
an error that prevents the program to operate its function as it should either while launching the 
software using its features system operators and software developers spend huge time testing their 
proposed software as modules to bypass having any type of bugs and assessing the potentials of 
having any type of system crashes for any reason [2]. In presented work an answer comparison 
mechanism has been defined and implemented to obtain a final answer based on separated 
answers given by chosen models comparative studies were performed between models with 
particular reference to their attention layers and analysis of the results gained by models, 
including error analysis [3]. Early prediction and detection of problematic parts should typically 
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demand quick debugging the nature of which is determined by the severity degree of the defect 
or defects that have been found [4]. In addition the phase of the software development process 
known as the gathering of software requirements is an important early stage [5]. Machine learning 
algorithms take the input as a series of feature vectors which means that one has to produce these 
numerical values for each entry [6]. Hence, researchers tend to reuse existing datasets in order to 
reduce the amount of work to be done and increase the reproducibility of their approaches [7]. 
These wrong tags will cause the bug report to not be correctly assigned to the appropriate 
developers thereby increasing the difficulty of defect repair [8]. In order to reduce this impact 
and accelerate the speed of defect repair the software engineering industry needs accurate and 
automated classification methods for bug reports [9]. 

 
Figure.1. Several examples of bug report from Bugzilla 

 
2. RELATED WORKS  
Bug report classification helps developers understand and fix software defects to the skyrocketing 
number of bug reports, manual classification has become time-consuming and laborious for a 
long time researchers have been exploring how to implement automatic classification of bug 
reports [10]. NN can effectively fit random nonlinear data and features self-learning capability 
after proper parameter [11].The most widely used machine learning algorithms for bug prediction 
are Logistic Regression Naive Bayes, Decision Tree, and Random Forest ensemble learning 
techniques have started to be adopted in the context of bug prediction [12]. Additionally they 
proposed an analytical model so as to accurately evaluate the efficiency of remediation techniques 
for various fault types. Related to a reactive fault controlling system the results of an experiment 
using a specifically designed prototype demonstrate enhanced availability with reduced overhead 
[13]. According to Ahmed the framework is created utilizing NLP along with supervised machine 
learning methods. It allows for modeling the vector representation of the context paragraph at 
different structural levels: character level, word-level and contextual-level. The architecture is 
based on the bidirectional attention flow mechanism [14]. To avoid information loss caused by 
early summarization, attention is computed at each time step, instead of summarizing the context 
into one fixed-size vector [15]. The imbalanced data problem can be solved using the 
oversampling methods, such as SMOTE. Bugs' reports have a summary or description field as 
text at the bug prediction process there is a need to deal with this text and convert it to numeric 
format to apply the machine learning algorithms [16].  
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Figure 2. Bugs classification and prediction model architecture 

 
3. SYSTEM ARCHITECTURE 
We collect and manually mark bug reports in the open repository and then perform preprocessing 
steps on them. We use BERT and TF-IDF methods to extract features. And the text feature and 
frequency feature are merged and normalized. We input the extracted features into five classifiers 
[17].The preprocessing of training data starts with the deletion of unnecessary class and file-
related information for every entry such as filename, parent, path. Furthermore we binaries the 
target labels, converting the number of bugs found in a class to 0 or 1 [18]. Introduces two novel 
concepts to approaching the reading comprehension task First authors present a re-attention 
mechanism Second they show a dynamic-critical reinforced learning approach to training models. 
The BERT model is a pre-training model proposed by Google which can learn dynamic context 
word vectors and more comprehensively capture the features of word meaning, word position 
and sentence meaning [19]. In this experiment the output of the penultimate layer of the BERT 
model is used as the feature score. 

 
Figure.3. Framework of our approach 

 
4. PROPOSED SYSTEM 
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In case most software programs have become large and complicated, software bugs need to take 
into consideration. Detecting and fixing bugs problem at initial levels that reflected positively on 
the quality, security, and performance of the program and will save time and effort. Machine 
learning algorithms and Natural language processing techniques (NLP) have a great effort in 
software bugs classification and prediction [20]. The statistical analysis of the SQuAD questions 
as well as an analysis of the results obtained standalone architectures with regard to the question 
classes. It shows how the SQuAD data set has been splatted in order to perform experiments 
[21].` 

 
Figure 4. Our proposed Bugs’ severity and priority classification and prediction system 

 
5. METHODOLOGIES 
One cannot completely eradicate bugs, fixes, patches, and other software-related issues because 
each one has a severity and priority level dataset utilized in this study, focuses on the predictive 
analysis of software development frameworks in relation to software bug attributes severity, and 
priority the dataset for agile software development was created [22].  To overcome this issue we 
used two techniques: feature selection and oversampling (the Synthetic Minority Oversampling 
Technique (SMOTE)) along with ensemble learning method. The evaluation metrics used are the 
level of accuracy, F1 score, precision, and recall repeated in the corpus that may help to 
distinguish between the types of bugs' severity [23]. 
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Figure 5. Proposed Methodology of this study 
 

6. GENETIC ALGORITHMS 
Random includes two aspects: one is for the training process. In order to ensure that all samples 
have a chance to be drawn once, the classifier randomly selects a training sample set and the data 
used in each round of training is randomly selected from the original sample set with replacement 
[24]. 
Algorithm Weighted class-specific voting ensemble Training data: full SQuAD training data set 
Evaluation data: full SQuAD evaluation data set  
Step1: Each model is trained on the Training data.  
Step2: For each evaluation question, a question class is identified.  
Step3: Each trained base model is asked to answer the questions from the Evaluation data, 
resulting in three candidate answers per question.  
Step4: Each candidate answer gets a weight that corresponds to the question class and the 
answering model.  
Step5: if class is different from undefined then  
Step6: if one candidate answer is a duplicate of another one then  
Step7: Their weights are added together  
Step8: The ensemble returns the candidate answer that has the highest weight.  
Step9: else  
Step10: The candidate answer produced by the globally best model is returned  
Step11: else  
Step12: The candidate answer produced by the globally best model is returned 
7. EXPERIMENT RESULTS 
This experiment divides the training data and test data by 8:2, and extracts the features of the 
report summary field, other fields, and intention, respectively. In order to find the most suitable 
classifier for the proposed method In order to improve the result and the model performance, two 
techniques were used, Feature selection and Oversampling techniques. SMOTE focuses on 
samples near the border of the optimal decision function and will generate samples in the opposite 
direction of the nearest neighbors' class and connect inliers and outliers. The models encounter 
challenges in accurately forecasting classes other than 5 and 1 in terms of severity and 
importance. However, it is in these specific classes that the models demonstrate exceptional 
performance. 
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Figure 6. Distribution of Severity 

 
8. CONCLUSION AND FUTURE WORK 
We propose a new automatic classification approach for bug reports increase the intention of the 
report based on the text information of the report. Our approach combines Text Mining, Natural 
Language Processing and Machine Learning technologies. We first collected reports from the 
four ecosystems in the bug repository, and manually marked their types and intention, with the 
goal of constructing the data set required. The deeper analysis of input data was required to 
achieve better results than best deep learning model is performance used instead of using the 
bug's summary. The comparison process was done depending on Accuracy and ROC curve final 
results, before and after applying the over-sampling and feature-selection techniques. Out future 
plans include trying different ensemble learner methods combined with other base learner 
techniques. We would also like to try other preprocessing techniques as well in our future work. 
Our goal is to provide an AI assistant for people who handle bug assignment, so they can save 
the time of going through a long list of possible components. Based on our experiments and user 
feedbacks, the service works fairly reliably for this purpose. 
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