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Abstract 
Micronutrient deficiencies, especially those involving Vitamin D, remain a significant public health 
concern worldwide due to their high prevalence and clinical implications. In recent years, deep learning 
has shown great potential as a non-invasive method for detecting deficiencies by analysing digital images. 
This paper offers a comprehensive overview of recent advancements in deep learning techniques applied 
to the identification of vitamin deficiencies using JPEG-compressed images. This discussion highlights 
how convolutional neural networks (CNNs), transfer learning techniques, attention mechanisms, and 
image enhancement methods contribute to increasing the accuracy of deficiency detection. In addition, 
the review explores the integration of multimodal data sources and addresses important considerations 
such as model interpretability, data integrity, and real-world clinical relevance. Drawing on advancements 
in related fields like skin disease classification, image segmentation in medical imaging, and 
histopathological evaluation, the paper highlights ongoing challenges and potential research directions. 
Overall, the study illustrates how deep learning methods could offer scalable, cost-effective, and 
accessible tools widely accessible tools for recognising micronutrient deficiencies during patient care. 
Keywords: Vitamin deficiency detection, Deep learning techniques, Medical image analysis, 
Convolutional Neural Network (CNN) 
 
1. INTRODUCTION 
Vitamin deficiencies continue to pose a significant public health issue globally, affecting billions and 
contributing to a wide spectrum of health problems such as weakened immune function, fatigue, anaemia, 
and developmental delays. While conventional diagnostic techniques like blood tests are highly reliable, 
they are also invasive, costly, and not always feasible in underserved or remote regions. Vitamin B12 and 
folate deficiencies are commonly diagnosed through laboratory testing of specific blood markers, which 
can be invasive and time-consuming. These limitations point to the need for efficient, non-invasive 
methods such as image-based deep learning approaches [26]. To address these limitations, advancements 
in deep learning and image-based medical diagnostics have introduced promising non-invasive 
alternatives for identifying micronutrient deficiencies, including those related to Vitamin D and B12 [3], 
[13]. Among deep learning methods, Convolutional Neural Networks (CNNs) have proven highly 
effective in various medical imaging applications, including the classification of skin conditions, 
identification of lesions, and analysis of histopathological images. [1], [2], [6], [22], [24]. Due to their 
hierarchical feature learning, CNNs are well-suited for capturing the subtle visual patterns in skin, nails, 
or facial features that may correlate with micronutrient deficiencies [13]. 
Transfer learning has become increasingly important in medical image analysis, particularly when 
working with limited training data—a common limitation in studies related to vitamin deficiency 
detection. Several investigations [1], [12] have demonstrated that pre- trained models can be effectively 
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adapted to specialized diagnostic tasks, enabling improved accuracy and efficiency without requiring 
extensive datasets. In addition to transfer learning, ensemble approaches and optimization-based methods 
[4], [5] have been employed to enhance model performance by combining multiple predictive models or 
refining feature extraction processes. 
A detailed and authoritative survey on fine-grained image analysis (FGIA), a domain that focuses on 
distinguishing subtle differences between visually similar classes, an approach that is directly relevant to 
medical applications such as detecting vitamin deficiencies from compressed images[14]. Ensuring the 
reliability and security of deep learning models is also essential in this domain, especially when handling 
sensitive patient data and striving for diagnostic accuracy [17]. A visually interpretable deep learning 
framework further enhances clinical decision-making by helping identify minor yet critical signs of 
vitamin deficiencies in medical images [18]. 
The interpretability of AI models is of paramount importance in healthcare, where clinical adoption 
depends on transparent and explainable decision-making. Techniques that enable visualization of a 
model’s internal reasoning have shown promise in improving trust and usability. As highlighted in recent 
research [2], such interpretability tools are particularly vital in sensitive domains like skin cancer diagnosis 
from histopathological images. They help clinicians understand the basis of automated predictions, 
thereby supporting more informed decisions in patient care and treatment planning. This review focuses 
on consolidating the current landscape of deep learning approaches for vitamin deficiency detection, 
situating it within the broader framework of medical image analysis and non-invasive diagnostic 
technologies. It investigates state-of-the-art architectures, methodological developments such as 
multimodal data integration [19], explainable artificial intelligence [20], and transfer learning techniques 
[1], [12], while also addressing persistent challenges like data imbalance, domain adaptation, and the 
trustworthiness of AI systems. The aim is to provide a well-rounded overview of existing methodologies 
and to identify future research opportunities in the realm of AI-supported micronutrient deficiency 
diagnostics. 
2. METHODS 
Recent advancements in image-based diagnostic tools for vitamin deficiency detection, as well as broader 
applications in medical and dermatological imaging, reveal the use of diverse deep learning strategies. 
These methods can be grouped into major categories depending on their underlying architecture. 
i) Convolutional Neural Networks (CNNs) 
CNNs serve as a foundational component in numerous medical imaging techniques. They excel at 
identifying spatial patterns within images, making them particularly suitable for processing dermoscopic, 
histological, and fingernail images. 
Figure 1 illustrates the basic architecture of a Convolutional Neural Network (CNN), a popular deep 
learning model primarily used for image processing tasks. 
● Input: The model takes an image as input. 
● Convolution: Filters are applied to extract important features such as edges, textures, or patterns. 
● Pooling: This step reduces the spatial dimensions of the feature maps, helping to minimize 
computation and prevent overfitting. 
● Fully Connected: The reduced feature set is flattened and passed through one or more dense layers 
to perform classification or regression. 
● Output: The final result is produced, such as a class label or probability distribution. 
This structure allows CNNs to automatically learn and extract relevant features from images for various 
tasks like classification, detection, and segmentation. CNNs have been widely adopted in tasks such as 
skin disease classification [6], segmentation of microstructures in skin [7], and early detection of skin 
cancers [8], demonstrating their adaptability across visual medical tasks. In the context of vitamin 
deficiency, CNNs have been applied to nail image analysis, enabling the detection of nutrient shortfalls 
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like Vitamin D and B12 by learning textural and chromatic variations indicative of deficiency [13]. 

 
Figure 1 Convolution Neural Network 

ii) Transfer Learning 
Due to the large, labelled medical datasets being hard to obtain, transfer learning has become a practical 
solution. Models like VGG, ResNet, and DenseNet are first trained on large datasets and later adapted to 
specific tasks such as diagnosing conditions from skin or nail images [1], [12], [22]. For instance, the 
study in [1] introduces a model that works across various skin image types, while [12] tackles the issue of 
differences between datasets using adversarial domain adaptation. 
iii) Multimodal and Data Fusion Techniques 
Enhancing prediction accuracy often involves combining multiple data types. Multimodal learning 
approaches merge image data with structured clinical inputs such as age or symptom profiles to improve 
diagnostic reliability. The study Airport Visibility Classification Based on Multimodal Fusion of Image-
Tabular Data [19] illustrates the utility of   such   fusion,   which   can   be   extended   to   medical   
diagnostics. In the case of micronutrient deficiency, incorporating clinical metadata with image analysis 
could significantly boost model performance [3]. 
iv) Ensemble Learning Approaches 
Ensemble techniques strengthen model reliability by combining outputs from several neural networks. 
Methods such as boosting, bagging, and weighted averaging have proven useful in medical image 
classification, as shown in studies [4] and [22]. When applied to vitamin deficiency detection, these 
approaches can improve accuracy by merging information from different parts of the image or from 
multiple diagnostic models. 
v) Optimization-Driven Deep Learning 
To improve model performance, optimization techniques like genetic algorithms, particle swarm 
optimization (PSO), and heap-based strategies have been applied for fine-tuning deep learning networks 
[5].where such techniques are used to optimize network parameters. These approaches are particularly 
relevant in nutrient deficiency classification, where small variations can be critical and precise parameter 
tuning is essential. 
vi) Explainable AI in Medical Imaging 
For AI models to gain trust in clinical environments, transparency in decision-making is crucial. 
Visualization techniques such as saliency maps, Grad-CAM, and attention mechanisms are used to identify 
the most influential regions in an image for a model’s prediction. For example, heatmaps have been 
utilized in [2] to support clinical interpretation in cancer diagnosis. Cancer diagnosis predictions. Similar 
interpretability mechanisms are important in vitamin deficiency detection, as they can enhance clinician 
trust and inform medical decisions. 
vii) Domain Adaptation and Adversarial Learning 
A persistent challenge in medical imaging is the variation between training and deployment data, 
especially due to differences in skin tone, lighting, or camera settings. Adversarial and domain adaptation 
techniques, such as those discussed in [12], help models generalize to new settings and populations—an 
essential consideration for vitamin deficiency diagnostics applied in diverse environments. 
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viii) U-Net and Attention-Enhanced Models 
Segmentation-focused architectures, such as U-Net variants, are vital for isolating clinically relevant areas 
in images. Attention-based improvements, like those in DA-CapNet [15], provide enhanced focus on key 
features such as capillaries or nail beds. These techniques are especially valuable for vitamin deficiency 
detection, where targeting precise regions can improve classification outcomes. 
  
3. DEVELOPMENT OF VITAMIN DEFICIENCY DIAGNOSIS TECHNOLOGY AND 
TRADITIONAL DIAGNOSTIC PROCESSES 
A. Conventional Diagnostic Approaches for Vitamin Deficiency 
Historically, the identification of vitamin deficiencies has involved a combination of physical 
examination, patient history, and laboratory-based biochemical assessments. Physicians look for outward 
indicators such as changes in skin tone, brittle nails, delayed wound healing, and general fatigue. However, 
these symptoms can be ambiguous and typically require confirmation through blood tests or other 
biochemical analyses to establish an accurate diagnosis. 
Advanced biosensing technologies have recently been introduced to address some of the limitations of 
conventional methods. For example, A newly developed electrochemical sensor incorporating molecularly 
imprinted polymers has demonstrated effective selective detection of vitamin D3. It offers notable 
specificity, sensitivity, and stability, suggesting its strong potential for biomedical applications [30]. 
Additionally, another sensing method employs MPA-CdTe quantum dots to rapidly and accurately detect 
vitamin B12 in aqueous environments, with potential applications in both biological and chemical 
diagnostics [31]. 
Despite their reliability, traditional diagnostic procedures tend to be invasive, time-intensive, and 
expensive. They are often impractical in areas with limited medical infrastructure, hindering widespread 
screening and public health initiatives, especially in rural or underserved communities. 
B. Automated Detection of Vitamin Deficiencies via Image-Based Machine Learning 
In recent years, machine learning has gained significant attention as a powerful approach in image-based 
diagnostic systems, particularly for detecting vitamin deficiencies. One approach involves capturing 
thermal images of skin lesions before and after applying a cooling stimulus. These thermal recovery 
patterns, which differ based on lesion type due to vascular characteristics, are then analyzed by machine 
learning algorithms for classification [27]. 
Quantum computing techniques, including Quantum Support Vector Machines (QSVM) and Quantum 
Convolutional Neural Networks (QCNN), have demonstrated potential in image classification tasks by 
encoding skin lesion data into quantum states, showing encouraging initial outcomes in medical diagnostic 
applications [28]. In another study, deep learning techniques incorporating CNNs and transfer learning 
were applied to 3D Raster-Scan Optoacoustic Mesoscopy (RSOM) skin images. The system achieved 
effective segmentation and biomarker extraction, identifying attributes such as epidermal thickness and 
blood vessel patterns, which are relevant for diagnosing skin-related disorders such as psoriasis and aging 
[29]. 
4. DEEP LEARNING APPROACHES FOR VITAMIN DEFICIENCY DETECTION 
Artificial intelligence, particularly deep learning, is reshaping how vitamin deficiencies are detected by 
offering non-invasive, scalable alternatives to traditional diagnostics. These AI- driven systems leverage 
image analysis and pattern recognition to identify signs of micronutrient deficiencies through features 
such as facial texture, nail appearance, or skin coloration. 
Emerging research highlights several promising strategies: 
● CNN-based models have been used to analyze nail and facial images to detect micronutrient 
deficiencies such as Vitamin D and B12 [13]. 
● Multimodal frameworks combine visual data with personal health records (e.g., demographics, 
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lifestyle habits) to enhance diagnostic precision [19]. 
● Transfer learning enables the adaptation of existing models like ResNet, Inception, and VGG to 
small, domain-specific datasets used in medical contexts [1], [12]. 
● Mobile and point-of-care solutions powered by AI allow real-time assessments in field conditions, 
making them ideal for use in areas with limited healthcare access. 
A crucial aspect of these methods is interpretability. Tools such as saliency maps and related visualisation 
methods provide visual explanations by emphasizing image regions that significantly influence 
predictions, thereby enhancing clinical transparency and building trust in automated diagnostic systems 
[2], [20]. 
Collectively, these advancements reflect a paradigm shift from lab-based diagnostics to smart, image-
guided tools that are not only cost-effective and efficient but also suitable for large-scale screening and 
global health management. 
A) Data Sources for Vitamin Deficiency and Image Analysis Research 
The creation of deep learning models for detecting vitamin deficiencies depends on varied datasets, which 
are typically sourced from clinical environments or publicly available databases. 
● A curated collection of high-resolution fingernail images annotated by medical professionals was 
used to train CNN models for micronutrient deficiency analysis [13]. Another dataset combined patient 
records with clinical indicators, including biochemical results and vitamin D levels, to support machine 
learning models for predictive diagnostics [3]. 
● Studies focusing on ensemble and CNN-based methods for skin analysis utilized public datasets 
such as ISIC for annotated skin lesion images [4], [6], [7], [8]. 
● Research involving evolutionary optimization often relied on clinical image datasets annotated 
with diagnostic labels from hospitals or open-source medical databases [5]. 
● Skin microstructure studies employed dermoscopic images from dermatology clinics, capturing 
both healthy and pathological samples [7]. 
● MRI image restoration tasks used standardized MRI scans embedded with compression artifacts 
to test the performance of cross-domain neural networks [9]. 
● Deep learning for skin lesion recognition frequently leveraged large, annotated dermoscopic 
datasets from initiatives such as the ISIC challenges [10], [11]. 
● Research in domain adaptation and transfer learning has integrated data from various sources—
such as dermoscopic and clinical images across different populations—to enhance generalization across 
domains [12]. 
  
B) Preprocessing Techniques for Medical Image Analysis 
Image preprocessing is essential for maintaining data quality and uniformity prior to training deep learning 
models. Several frequently applied techniques have been highlighted in the reviewed studies: 
● Noise reduction and artifact removal improve image clarity, especially in datasets with 
compression-induced distortions, such as JPEG MRI images [9]. 
● Normalization and resizing standardize images to fixed dimensions and intensity ranges to 
facilitate uniform model input [3], [10]. 
● Contrast enhancement, including histogram equalization, improves the visibility of important 
structures in dermoscopic and histopathological images [2], [10]. 
● Region-of-interest segmentation or initial preprocessing helps isolate the areas of diagnostic 
importance before running classification models [7], [15]. 
● Data augmentation, though not always explicitly reported, is widely employed to enrich training 
datasets via techniques like flipping, rotation, and scaling, helping reduce overfitting [4], [12]. 

 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

 
 

 
 
 
 

 
752  

Table 1. Summary of CNN Types Used in Reviewed Research Works 
S.No. CNN Type Description / Application Reference 

No(s). 
1 Standard CNN Custom CNNs used for basic classification tasks 

like face skin disease detection 
[6], [7] 

 
2 

Pre-trained CNN (Transfer 
Learning) 

Fine-tuned models like ResNet, VGG16, 
InceptionV3, EfficientNet for skin/vitamin 

analysis 

[1], [3], [10], 
[23] 

3 Ensemble of CNNs 
Combines multiple CNNs to enhance accuracy 
and robustness 

[4], [8], [21] 

4 U-Net and its Variants U-Net for segmentation tasks; variants like DA- 
CapNet used in capillary/nail image analysis 

[15] 

5 Attention-based CNNs CNNs integrated with attention mechanisms for 
skin cancer and aging region focus 

[2], [20] 

6 Adversarial/Domain 
Adaptation CNNs 

Uses GANs or domain adaptation for cross- 
domain generalization 

[12] 

7 Evolutionary/Optimized CNNs 
CNNs optimized using evolutionary algorithms 
(e.g., heap-based) 

[5] 

8 Quantum CNNs Quantum-enhanced CNN models for improved 
feature extraction and classification 

[28] 

 
Single-Model vs. Multi-Model Approaches 
The literature reveals a balanced application of both single-model and ensemble deep learning strategies 
for tasks such as medical image classification and identifying nutrient deficiencies. 
 
Single-Model Approaches 
Several studies have utilized standalone deep learning models, most commonly Convolutional Neural 
Networks (CNNs) or pre-trained architectures adapted through transfer learning. These models—such as 
VGG, ResNet, Inception, and U-Net—were selected for their established reliability and computational 
efficiency. Research works including [6], [13], [15], [22], and [24] demonstrate the use of single-model 
systems in applications like skin lesion classification, detection of micronutrient deficiency through nail 
or facial imagery, and image segmentation. These approaches focused on tuning a specific architecture to 
maximize performance within a defined scope. 
Multi-Model and Ensemble Methods 
Conversely, several other studies adopted ensemble learning techniques to enhance predictive 
performance and ensure model robustness. By aggregating the outputs of multiple models, ensemble 
methods help reduce prediction variance and improve generalizability. For instance, study [4] utilized an 
ensemble of CNNs to refine image classification results, while 
[23] introduced the IncepX-ensemble model for early detection of various skin conditions. 
Other works such as [5], [8], and [21] combined multiple deep learning models or used hybrid 
methodologies to elevate diagnostic precision. The decision to employ a single or multi- model framework 
was typically guided by the problem’s complexity, available dataset size, and the balance between 
accuracy and computational resources. 
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C) Deep Learning Frameworks in Use 
Across the surveyed studies, the implementation of deep learning techniques was largely supported by 
widely adopted frameworks known for their flexibility and scalability. A total of sixteen papers explicitly 
referenced the use of platforms such as TensorFlow, Keras, and PyTorch, emphasizing their importance 
in medical image analysis and vitamin deficiency research. TensorFlow and Keras were frequently chosen 
for developing CNN models and transfer learning implementations, as observed in [1], [4], [6], and [23]. 
Keras, with its user- friendly interface and TensorFlow integration, was particularly popular in studies 
involving U- Net architectures for segmentation, such as [15] and [25]. 
PyTorch stood out in works that required higher levels of model customization or experimentation, as 
documented in studies [11], [25], and [29]. Moreover, research integrating quantum computing methods 
leveraged PennyLane in combination with PyTorch to implement hybrid quantum-classical models, as 
seen in [28]. Additionally, hybrid approaches that merged deep learning with classical machine learning 
frequently utilized Scikit-learn for tasks like data preprocessing or final-stage classification, as evidenced 
in studies [3] and [13]. These frameworks have proven essential for the development and execution of 
complex models due to their modular design, broad community support, and compatibility with hardware 
accelerators— As a result, they have become essential components in the advancing 
domain of medical image analysis. 
  

Table 2. Deep Learning Framework 
S.No. Paper Title Framework Mentioned / 

Likely Used 
1 A Novel Transfer Learning Framework for Multimodal Skin 

Lesion Analysis 
TensorFlow / Keras 
(inferred) 

2 A Visually Interpretable Deep Learning Framework for 
Histopathological Image-Based Skin Cancer Diagnosis 

Keras / PyTorch 

3 
A Predictive Performance Analysis of Vitamin D Deficiency 
Severity Using Machine Learning Methods 

Scikit-learn / TensorFlow 

4 
An Analysis on Ensemble Learning Optimized Medical Image 
Classification 

TensorFlow 

5 An Evolutionary Deep Learning Method... with Deep CNNs TensorFlow (mentioned) 
6 Studies on Different CNN Algorithms for Face Skin Disease 

Classification 
TensorFlow / Keras 

7 
Skin Microstructure Segmentation and Aging Classification 
Using CNN-Based Models 

TensorFlow (inferred) 

8 
Skin Cancer Detection Using Combined Decision of Deep 
Learners 

PyTorch / TensorFlow 
(likely) 

10 Recent Advances in Diagnosis of Skin Lesions Using 
Dermoscopic Images 

PyTorch 

11 Recent Advancements and Future Prospects in Active Deep 
Learning... 

PyTorch / TensorFlow 

12 Progressive Transfer Learning and Adversarial Domain 
Adaptation... 

TensorFlow + GAN 
frameworks 

13 Micronutrient Deficiency Detection with Fingernail Images Keras / TensorFlow 
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15 DA-Capnet: Dual Attention Deep Learning Based on U-Net Keras (mentioned) 
23 Early Detection of Multiclass Skin Lesions Using IncepX- 

Ensemble 
TensorFlow 

24 
DeepSkin: A Deep Learning Approach for Skin Cancer 
Classification 

TensorFlow / Keras 

28 
Exploring Quantum Machine Learning for Enhanced Skin Lesion 
Classification 

PennyLane + PyTorch 
(quantum + classical) 

 
D. Evaluating Indicators 
Evaluating deep learning models in medical image analysis—particularly in the context of vitamin 
deficiency detection and skin disease classification—requires a set of performance metrics suited to the 
specific task at hand. Accuracy is the most commonly applied metric, offering a general measure of how 
often predictions are correct across various studies [1], [4], [6], [23]. In scenarios where class imbalance 
is present, precision, recall, and the F1-score are frequently utilized to provide a more balanced view of 
the model's performance with respect to both false positives and false negatives [3], [13], [22], [24]. 
  
To assess classification confidence in both binary and multiclass problems, Receiver Operating 
Characteristic (ROC) curves and the corresponding Area Under the Curve (AUC) are widely adopted [2], 
[11], [21], [28]. Confusion matrices are also used to visualize the distribution of correct and incorrect 
predictions across all categories, improving the interpretability of model performance [5], [8], [25]. 
For image segmentation tasks, overlap-based metrics such as the Mean Intersection over Union (IoU) and 
the Dice Similarity Coefficient (DSC) are employed to evaluate the correspondence between predicted 
and actual segmented regions [15], [25], [29]. In tasks focused on image restoration—particularly those 
targeting artifacts from compression— quantitative metrics like Mean Squared Error (MSE) and Peak 
Signal-to-Noise Ratio (PSNR) are used to measure improvements in visual quality [9]. Together, these 
diverse metrics enable comprehensive evaluation of model reliability, predictive accuracy, and clinical 
relevance. 
 
E. Model Performance and Analysis 
The effectiveness of deep learning models in detecting vitamin deficiencies and skin- related conditions 
is greatly influenced by factors such as the choice of model architecture, the preprocessing methods 
applied, and the quality of the datasets used. Most studies demonstrate that Convolutional Neural 
Networks (CNNs), particularly when optimized or combined with ensemble methods, consistently 
outperform traditional machine learning models in image- based diagnostic tasks [4], [5], [6]. 
Models using transfer learning frameworks such as InceptionV3, ResNet, and DenseNet have shown high 
accuracy and robustness, especially in cases with limited medical image datasets [1], [10], [16], [23]. For 
instance, transfer learning-based models reported classification accuracies exceeding 90% in multiclass 
skin lesion detection tasks [23], [24]. 
In some cases, ensemble models that integrate predictions from multiple deep learners further improve 
diagnostic accuracy and reduce generalization errors [4], [8], [21]. Evolutionary optimization strategies 
and attention mechanisms have also enhanced CNN performance by improving feature selection and 
localization, as shown in [5], [15], and [25]. 
Quantitatively, the best-performing models reported metrics such as: 
● Accuracy: 89%–96% across most skin lesion and deficiency classification tasks [3], [6], [13]. 
● AUC: Over 0.90 in models incorporating multimodal features or deep ensemble methods [2], [11], 
[21]. 
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● F1-Score: Values above 0.85, indicating a strong balance between sensitivity and specificity [13], 
[22], [24]. 
● In the field of medical image segmentation, models like U-Net and its attention- augmented 
extensions—such as DA-CapNet—have demonstrated high accuracy, with Dice Similarity Coefficients 
typically ranging from 0.85 to 0.92 and elevated Intersection over Union (IoU) values. These architectures 
have shown particular effectiveness in applications like skin microstructure segmentation and capillary 
boundary detection [15], [25]. 
  
● Collectively, performance assessments across studies highlight the effectiveness of deep learning 
models—especially those integrating transfer learning strategies, attention mechanisms, and ensemble 
methods—in delivering accurate and robust results. These models show significant potential in both 
detecting vitamin deficiencies and addressing broader challenges in dermatological image analysis. 
 
Table 3. Performance Metrics 

Reference 
No. 

 
Task 

 
Model/Technique 

Accuracy 
(%) 

F1- 
Score 

 
AUC 

Dice 
Coefficient 
(DSC) 

 
IoU 

[3] 
Vitamin D 
Deficiency Severity 

Machine Learning 89 0.86 0.91 – – 

[6] 
Face Skin Disease 
Classification 

CNN 92 0.88 0.93 – – 

 
[13] 

Micronutrient 
Deficiency 
Detection 

 
Deep Learning 

 
90 

 
0.87 

 
0.90 

 
– 

 
– 

[15] Nailfold Capillary 
Segmentation 

Attention U-Net – – – 0.90 0.87 

[23] Multiclass Skin 
Lesion Detection 

Transfer Learning 
Ensemble 

94 0.89 0.95 – – 

[25] Medical Image 
Segmentation 

GREnet – – – 0.88 0.86 

 
 

Figure 2. Model Evaluation Metrics for Vitamin Deficiency Detection 
The bar chart in Figure 2 displays the performance of various models used for vitamin deficiency 
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detection, based on three evaluation metrics: Precision, Recall, and F1-Score. 
● CNN (Ref. [6]) shows the lowest performance, with values close to 88%. 
● Transfer Learning (Ref. [1]) demonstrates improved results, with all metrics around 91–92%. 
● Ensemble Model (Ref. [4]) performs even better, reaching up to 94% recall and 93.6% F1-score. 
  
● Quantum ML (Ref. [28]) outperforms the others, achieving the highest scores across all metrics, 
peaking at 94.9% F1-score. 
The chart highlights a clear progression in model performance, with advanced techniques like ensemble 
learning and quantum machine learning providing superior accuracy and consistency in detecting vitamin 
deficiencies. 
 
5. CONCLUSION 
Recent advances have underscored the growing importance of deep learning in the diagnosis of vitamin 
deficiencies and the classification of skin-related conditions. Techniques such as Convolutional Neural 
Networks (CNNs), transfer learning, ensemble modeling, and attention-based architectures have shown 
promising results in medical image analysis, delivering high accuracy, robustness, and computational 
efficiency. Performance metrics like accuracy, F1-score, AUC, and Dice coefficient are consistently used 
to validate these models in real-world diagnostic applications. Despite this progress, several challenges 
remain. These include the limited availability of annotated datasets, variations in image quality, and the 
demand for more interpretable and transparent model decisions in clinical practice. Nevertheless, 
emerging strategies—such as integrating multimodal data, applying cross- domain adaptation, and 
employing lightweight neural networks—are paving the way for improved solutions. With ongoing 
research and development, deep learning continues to evolve into a scalable, non-invasive, and reliable 
approach for the early detection and classification of micronutrient deficiencies and dermatological 
disorders. 
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