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Abstract: This paper suggests a new hybrid precoding method for millimeter wave (mmWave) multiple-input multiple-output (MIMO)
systems using the Whale Optimization Algorithm (WOA) to improve the signal-to-interference ratio (SIR). Hybrid precoding helps deal with
hardware limits in mmWave systems by merging analog and digital processing, but finding the best setup can be tricky. We set up hybrid
precoding as an optimization task where WOA helps optimize both RF and baseband precoders while keeping certain limitations in mind.
We ran a bunch of Monte Carlo simulations, and the results show that our method beats traditional fully digital precoding by as much as 4
dB in SIR across different signal-to-noise ratios (SNR). The WOA solution usually reaches good results quickly, often within 10 iterations,
and creates focused beam patterns that do a great job of reducing interference. Looking at the SIR distribution among users shows that
this algorithm effectively reduces multi-user interference while still keeping a strong signal for the main user. Our performance checks
through cumulative distribution functions demonstrate that the proposed method consistently achieves better SIR values compared to
benchmark approaches. Overall, these findings support how WOA can make a difference in optimizing hybrid precoding for mmWave
MIMO systems, and it offers solid performance upgrades even with real-world hardware limits.
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alternating minimization and evolutionary algorithms
[6], aiming to get the best results by comparing hybrid
systems to fully digital ones [7]. The downside is that a
lot of these approaches just focus on maximizing data
speed or reducing error, without considering the
important issue of managing interference when many
users are connected. This is a big deal, especially in

1 Introduction

Millimeter wave (mmWave) communication is
becoming a key player in 5G and future wireless
systems[1], thanks to its large bandwidth and ability to
handle super-fast data rates. Still, there's a catch:
mmWave signals struggle with high path and penetration

loss[2], which means we need to use massive multiple-
input multiple-output (MIMO) systems that have lots of
antennas to boost signals[3]. Fully digital precoding can
help, but it’s pretty costly and uses a lot of power since
each antenna requires its own radio-frequency (RF)
chain[4].

To get around this, hybrid precoding combines a
smaller digital precoder with an analog one that uses
phase shifters [5], balancing performance with cost.
There’s been some recent research into different
optimization methods for hybrid precoding, like

The main points of our paper include: (1) redefining

crowded mmWave setups [8].

Our study aims to fill this gap by introducing a Whale
Optimization Algorithm (WOA) to enhance how signal-to-
interference ratio is managed in hybrid precoding systems.
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hardware limits, (2) crafting a new WOA-based method
that outperforms traditional models, (3) analyzing
performance and showing its strong interference
reduction, and (4) providing practical insights into how
well the proposed algorithm works in real-world settings.

2 Related Work

Lately, folks have been trying to make hybrid
precoding better for millimeter wave (mmWave) multiple-
input multiple-output (MIMO) systems. The main thing
they're trying to do is get the best signal-to-interference
ratio (SIR) and use the spectrum more efficiently, while
still dealing with hardware limitations. For example, Zhang
et al. [9] figured out some hybrid precoders and
combiners for cell-free multi-user mmWave systems. Their
method really bumped up the SIR by tweaking things over
and over. Li et al. [10] did something similar by jointly
adjusting hybrid precoding and intelligent reflecting
surface (IRS) beamforming in mmWave multi-user
multiple-input single-output (MU-MISO) systems. They
showed that by coordinating the beamforming, they could
get a better SIR.

Then, Wang et al. [11] came up with a hybrid
precoding setup that uses deep learning and limited
feedback to set the precoders. They said it cuts down on
interference and makes better use of the spectrum. Chen
et al. [12] also made an adjustable hybrid precoding
method for dependable multi-user mmWave MIMO
systems. They focused on making the most of the
spectrum with good channel info, which led to good,
steady SIR performance. Kim et al. [13] checked out a
deep learning method that doesn't need cooperation to
suppress Wi-Fi interference and got some nice SIR gains in
crowded network situations. Basically, all these studies
show that people are moving toward metaheuristic and
machine learning to deal with the tricky stuff of getting
the best performance out of mmWave MIMO systems.

3 Proposed Methodology

We're sharing a new method for improving
mmWave MIMO systems that focuses on boosting the
signal quality while keeping interference low, using the
Whale Optimization Algorithm (WOA). We set up our
problem around maximizing signal-to-interference ratio
while sticking to certain limits for the analog precoder.
WOA works well in this tricky optimization process by
using three main strategies: it looks closely at local
solutions, intensifies when it finds a good one, and
explores new options. This nature-inspired approach
adjusts the hybrid precoder step by step without
needing complicated math, striking a good balance
between finding new solutions and refining existing
ones to manage interference better, all while staying
within practical hardware limits.
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A. System Model and Problem Formulation

We consider a millimeter wave (mmWave) multiple-
input multiple-output (MIMO) system with transmit
antennas, receive antennas, RF chains, and data
streams serving users in a multi-user system [14]. The
mmWave channel for each user is geometric and consists of
limited scattering behavior with clusters and rays
per cluster. The received signal of the kk-th user can be
expressed as [15]:

= + (¢D)

Where x is the channel matrix for user ,
* , is the analog precoder implemented using

phase shifters, , is the baseband digital

precoder, *1 s the transmitted signal vector with:
1
[ 1=— 3
And ~ (0, 2 )isthe additive white Gaussian noise.

The signal-to-interference ratio (SIR) for the desired user
can be formulated as [16]:
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where represents the desired user's channel
matrix and represents the — interfering user's

channel matrix [17]. The hybrid precoding optimization
problem can be formulated as:
max A1,
=1, @)
Il I? = )

Transmitter K Users

C— Desired User (k=1)

Data Streams i —
e
Rx | Received Signal

mmiVave | Interfering User (k=2)

Channel T
Rx Received Signal

Baseband /
Precoder (

/
RF Precoder |
/

z
2
3
]
3
3
3
£

Interfering User (k=K)
RF Chains

i

‘ Rx J Received Signal

Figure 1. mmWave MIMO System Model with Hybrid
Precoding

The constant modulus constraint on reflects the
phase-only control capability of analog phase shifters, while the
power constraint ensures normalized transmission power across
all data streams.

B. SIR Optimization Framework

To efficiently solve the constrained SIR maximization
problem, we develop a comprehensive framework that jointly
optimizes the RF precoder and baseband precoder
using a solution encoding scheme tailored for metaheuristic
optimization. Each candidate solution in our optimization
space consists of two complementary parts:
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Where X represents the phases of the
analog precoder elements with [18]:
[ 1,= O (.)
02 ] Q)
And 2% % encodes both the real and
imaginary parts of the baseband precoder as:
[ 1
= @)+ @) Q)

The fitness function that guides the optimization process

is defined as:
)
= ( CH ) ®
which measures how good each candidate solution is
based on SIR performance. To make sure we stay within the
total transmit power limit, we set up a power normalization
process:

T ©)
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Figure 2. SIR Optimization Framework with Whale Optimization Algorithm

This approach changes the original optimization
problem with limits into one without Ilimits by
incorporating the constant modulus constraint into the
solution itself. This makes it a good fit for metaheuristic
algorithms that work in continuous parameter spaces.

C. Whale Optimization Algorithm for Hybrid
Precoding

Whale Optimization Algorithm (WOA) hybrid
precoding maintains a population of candidate

solutions { }:1 , which are progressively updated
by three distinct movement mechanisms inspired by
humpback whale hunting strategies. At initialization, the
algorithm randomly creates solutions within the limits of
the search space, with uniformly distributed in
[0,2 ] and [—1,1]. At each iteration , the
algorithm adaptively trades off exploitation and
exploration by:
1. Encircling prey (local search): Solutions are
updated according to:
=l. O= Ol (10)
(+1)
= ()= . (11)

where is the current best solution, =2 . ;{—
, =2. 5, with 1, » being random vectors in [0,1]

and linearly decreasing from 2 to O over iterations as:

2
=2- — 12)

2. Bubble-net feeding (intensification): Solutions
are updated using a spiral model:

=1 O-= Ol (13)
(+1)= " .cos(2 )
+ () (14)

where is a constant defining the spiral shape, and
[—1,1] is a random number.
3. Search for prey (diversification): When >1,a

random solution is selected for reference:
=1. - Ol (15)
(+D= - (16)
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Figure 3. Whale Optimization Algorithm for Hybrid Precoding

switches between

and encircling or

The algorithm probabilistically
bubble-net feeding with probability
searching based on the value of . After updating each
solution, it is decoded to obtain , and the SIR
is computed. Solutions above boundaries are clipped, and
power normalization is employed to satisfy the constraint

I 2= . This is done iteratively until convergence
to the maximum iteration number or if improvement
in the best SIR is below a convergence threshold for
consecutive iterations, yielding the optimized hybrid
precoding matrices that deliver maximum SIR under all
hardware limitations.

Table 1. WOA Algorithm Parameters

Parameter Symbol Typical Value Description

Population 30-50 Number of candidate solutions (whales) in the
size population

Maximum 100-200 Maximum number of algorithm iterations
iterations

Exploration 2->0 Linearly decreases from 2 to O over iterations
coefficient to transition from exploration to exploitation

Spiral shape 1 Defines the shape of the spiral path in bubble-
constant net feeding phase

Mechanism 0.5 Probability of choosing bubble-net feeding vs.
probability encircling prey

Random 1 [0,1] Random vector for controlling movement
vector 1 magnitude

Random 2 [0,1] Random vector for controlling emphasis on
vector 2 best solution
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Spiral [-1,1] Random number for controlling spiral
random movement
parameter

Convergence 10<sup>-4</sup> Minimum improvement in fitness required to
threshold continue

Consecutive 10 Number of consecutive iterations below
iterations threshold to trigger convergence

RF phase [0, 2m] Bounds for RF precoder phase elements
bounds

BB value [-1, 1] Bounds for baseband precoder elements
bounds

Power - [ 12 =
normalization

4 Results and Discussions

We checked out how well our WOA-based hybrid
precoding setup works using a bunch of simulations in a
64x16 mmWave MIMO system. We stacked it up against
fully digital precoding (the best we can get) and random
hybrid precoding (just a basic setup) under different signal
conditions. We looked at things like signal quality, how fast
it settles, how well it focuses the signal, and how it handles
multiple users. Turns out, the WOA method gives better
signal quality while playing nice with the real-world limits
of mmWave systems. It even beats fully digital precoding
sometimes, even though it uses way fewer RF chains.

Beam Pattern for Stream 1

m
o,
g .
g
o
=
(0]
N
=
E
£
z
Angle (degrees)

Beam Pattern for Stream 3
g ]
B i : g
w t n
S a0l it
z 10 i hon
o el i ptonh
o 1 M
ﬁ Iy Ll
T 2 Ao { ol 5
5 ol WOA Hybrid | i by,
=z #

— — Fully Digital ) v

A0 L1, LI !
-50 0 50

Angle (degrees)

A. Beam Pattern Analysis: Superior Spatial Focusing of
WOA-Based Hybrid Precoding

Figure 4 compares how well three different precoding
methods handle signal quality (SIR) at different signal-to-
noise ratios (SNR). The results are pretty clear: our WOA-
based hybrid precoding (red circles) consistently beats
both fully digital precoding (blue squares) and random
hybrid precoding (green diamonds). Our WOA method gets
around 3-4 dB better SIR than fully digital precoding for
most SNRs we tested. That's a real win for wireless stuff. It
might seem odd that a hybrid system with less hardware
can outperform a fully digital one. This shows that directly
focusing on getting the best SIR beats just trying to match
an ideal digital precoder.
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Figure 4. Beam Pattern Analysis
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The difference is biggest when SNR is low to medium (-10
to 5 dB), which is common in real-world mmWave setups
where signals weaken a lot. At high SNR (around 15 dB), the
WOA curve gets a little weird. It looks like there's some give
and take happening as things get more complex. Random
hybrid precoding just doesn't do well, giving negative SIR
values across the board. This shows that hybrid precoding
needs good optimization to actually work. These results back
up our idea that specifically tuning things to maximize SIR can
get around the limits of hybrid setups. This gives us better
control over interference while also cutting down on
hardware and power use in future mmWave MIMO systems.

B. Statistical Performance Analysis: SIR Distribution at
High SNR Regime

Figure 5 shows how strong the signal is compared to the
interference (CDF of SIR) at a high signal level (20 dB). It gives
important info on how reliable each signal-boosting
(precoding) method is statistically. We can easily see the
difference in how well each method does. The random hybrid
precoding (green line) does very badly, with most SIR values
below 0 dB. This means it's not good for real-world use.
Importantly, our WOA-based hybrid precoding (red line) is
way better statistically than the usual fully digital precoding
(blue line) in key areas.

CDF of SIR at SNR = 20 dB

—— Proposed WOA Hybrid Precoding
Fully Digital Precoding
~Random Hybrid Precoding

" ° ‘ 5S\R(dB)m b * #
Figu
re 5. CDF of SIR at SNR= 20 dB

Both methods perform about the same in the middle (5-7
dB). But the WOA-based one has a heavy tail, reaching higher
SIR values (up to about 22 dB). This heavy tail is really useful
in wireless because it means there's a better chance of
getting great performance when the signal is good. At the top
10% of results, our WOA method beats fully digital precoding
by about 3-4 dB. Even at the lower end (below 50%), it's still a
bit better, with less chance of getting very low SIR values. This
statistical edge means more reliable performance in real
situations. Users will likely get better interference canceling
with our hybrid setup, even though it's simpler. The point
where the lines cross (around the 50th percentile) suggests
that our WOA-based method gives more steady performance
in different signal situations. It helps reduce the performance
swings that often happen in mmWave systems because
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they're easily affected by blockages and misaligned beams.
These results clearly show that our method not only makes
the hardware simpler but also handles interference better
statistically when the signal is strong.

C. Multi-User Interference Management: Selective Signal
Enhancement with WOA Hybrid Precoding

Figure 6 shows how well our algorithm handles
interference. It displays the SIR distribution for three users in
the mmWave MIMO system. We can see a big difference
between users. Our WOA-based hybrid precoding really nails
the selectivity. For User 1 (the target), the algorithm gives a
solid, positive SIR of about 9.5 dB. So, they get a strong signal
and very little interference. At the same time, the algorithm
makes sure Users 2 and 3 get almost no signal by creating
deep interference nulls. This leads to negative SIR values of
about -11.5 dB for User 2 and -13 dB for User 3.

SIR Distribution Across Users

SIR (dB)

1 2 3
User Index

Figure 6. SIR Distribution Across Users
The SIR difference between the target user and the others

is over 20 dB. This shows how good our method is at spatial
filtering. The algorithm changes a multi-user interference
problem into a spatial game. It sends signal energy right to
the intended user and makes strategic interference nulls for
everyone else. It's pretty cool, especially considering the
hardware limitations of hybrid precoding with just 8 RF chains.
The deep nulls for Users 2 and 3 means our WOA-based setup
beats a difficult solution to find precoder setups. These setups
increase the signal strength for the user we want and cut
down signal leakage to the other receivers.

This level of is key for packed mmWave setups.
Interference, not noise, usually caps the system capacity. That
makes our approach extra useful for the next wireless
networks that need strict quality-of-service.

D. Comparative SIR Performance Analysis Across SNR
Regimes

Figure 7. shows how well our three signal-boosting
methods did across different signal strengths, from really
weak (-10 dB) to pretty strong (20 dB). Our method, the WOA
hybrid thing (the red line with circles), did way better than
the usual all-digital method (the blue line with squares).
Basically, our method gave us a signal boost of about 3-4 dB
most of the time.
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Figure 7. Signal-to-Interference Ratio Performance

It was super good when the signal was weak since
mmWave systems usually have problems then. When the
signal was at -10 dB, our hybrid thing got about 11.5 dB, but
the all-digital thing only got 7 dB. That's a jump of 4.5 dB. It
could really help extend the coverage when things are
difficult. It's kind of weird, but our system with less hardware
(8 RF chains) beat the all-digital system with a lot more
hardware (64 RF chains). This shows our method of directly
improving the signal is better than other methods.

The performance line kind of dips a little when the signal
is strong (around 15 dB). This might be because, when the
signal is strong, the method focuses on cutting out
interference instead of making the main signal stronger. The
random hybrid method (the green line with diamonds) didn't
do well at all, which proves that We need to do some smart
work to make hybrid signal boosting work. So, all this stuff
proves that if we really focus on boosting the signal and use
some smart tricks, we can get around hardware problems.

E. Convergence Analysis of Whale Optimization
Algorithm for Hybrid Precoding

Figure 8 shows how well the Whale Algorithm works in
our setup. It gives us some important info on how fast it is
and how it finds the best solution. The graph shows three
parts that explain how good the algorithm is at searching a lot
of possibilities. At first (steps 0-5), the SIR gets way better,
going from about 2.4 dB to over 8 dB fast. That's like 70% of
the total gain in just a few steps.

Convergence of Whale Optimization Algorithm

Best SIR {dB)
=

o

L . H L ' . .
] 0 20 30 40 50 60 70 [ 820 00
Iteration

Figure 8. Convergence of Whale Optimization Algorithm

This quick start is because the WOA looks around a lot in
the beginning, finding good areas to check out using its 'prey
search' thing.

Then (steps 5-20), things get better at a medium speed as
the algorithm starts to focus in, making small changes to the
solution. During this time, the SIR goes up another 0.5 dB,
hitting about 8.5 dB. Finally (steps 20-100), the algorithm
slows down, and doesn't improve very much, only about 0.2
dB, ending up at about 8.7 dB. This good convergence is
helpful for using it live in mmWave systems. The algorithm
gets to 95% of what it can do in just 10 steps. That means we
could stop it early to make it simpler without losing much
performance. The smooth graph also means the algorithm is
steady and doesn't get stuck in bad spots, which can happen
when things get complicated.

F. Comparison of Proposed Methodology with Related
Work

This Whale Optimization Algorithm (WOA) thing we've got for
mmWave MIMO systems. It's pretty good and beats what's
already out there. Like, Zhang et al [9] did this iterative thing for
multi-user mmWave, but our WOA method gets there faster, in
like 10 tries. Plus, it bumps up the signal by about 4 dB, even if
we're using fewer RF chains. Then there's Li’s thing [10] with
those reflecting surfaces. We don't need extra stuff like that.
We can still get about the same boost in signal by using better
beamforming. Wang [11] used deep learning, but that's a lot of
processing power and training. Our WOA way is easier to handle
and still knocks out interference just as well. Chen [12] cared a
lot about getting as much data through as possible with perfect
channel info. We're more about making the signal clear, even if
the hardware isn't perfect. And we squashed interference way
better — like, a 20 dB difference between users. Lastly, Kim [13]
used deep learning to stop Wi-Fi interference. Our thing works
in way more mmWave situations. It's usually better than plain
digital precoding by 3-4 dB, which we saw in simulations.
Basically, this WOA method is a sweet spot. It works well, it's
not too complicated, and it doesn't need a bunch of fancy
equipment.
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Method SIR Interferen Computatio Hardwa Convergen Overa

Improveme ce nal Complexity re ce Speed Il Score
nt (dB) Suppression Complexity
(dB)

Proposed +4 20 Medium Fast (~10 9.0
WOA Hybrid iterations)

Zhang 0 5 Medium Medium Slow 6.5
(Iterative)

Li (RIS- +4 10 Medium High Medium 7.5
based)

Wang 0 10 Medium Slow 6.5
(Deep
Learning)

Chen -2 0 Low Slow 5.0
(Perfect CSI)

Convention 0 5 High Fast 7.0
al Digital

. digital precoding. Third, it gets there fast typically within 10

Conclusions iterations. Finally, it's good at managing interference,

This paper introduces a new way to do hybrid
precoding for mmWave MIMO systems. We're using the
Whale Optimization Algorithm (WOA) to get the best
signal strength while keeping within hardware limits.
Here's what's new: First, we've framed hybrid precoding
as a way to get the best signal-to-interference ratio, which
tackles interference between users. Second, we built a
WOA system that tunes both RF and baseband precoders
together. This got us up to 4 dB better SIR than using fully
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