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ABSTACT:  
With the rapid growth of applications, accurately predicting future traffic patterns is crucial for 
efficient application management and optimization. This research presents a hybrid deep learning 
framework that combines CNN (Convolutional Neural Networks) and LSTM (Long Short-Term 
Memory) networks to enhance the accuracy of network traffic prediction. CNN is leveraged for 
feature extraction, capturing spatial dependencies within the data, while LSTM is employed to 
model temporal dependencies, enabling the framework to effectively learn long-term patterns in 
network traffic. Unlike traditional deep learning models, the proposed hybrid approach improves 
prediction accuracy by utilizing CNN's capability to extract essential features and LSTM's 
strength in handling sequential dependencies. The framework significantly outperforms existing 
deep learning models by addressing the challenges of feature extraction complexity and sequence 
learning, making it a robust solution for real-time network traffic forecasting. The Kaggle dataset 
is used to test the suggested model for malware prediction. The accuracy, precision, and recall of 
the suggested model are evaluated. According to analysis, the suggested model predicts malware 
with a 98 percent accuracy rate. 
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1. Introduction 
The use of smartphones has significantly expanded with the advancement of communication 
technologies. According to the latest data from International Data Corporation, Android's market 
share achieved 86.6% and 1.3823 billion smartphones were shipped worldwide in the fourth 
quarter of 2019. Additionally, the report projects that the market share will increase to 87.1% in 
2023. Google created the open-source, Linux-based mobile operating system known as Android. 
Being an open-source operating system has numerous benefits, but as its security approach is 
reliant on permission tagging, there are certain security issues [1][2]. Many programmers create 
both official and unofficial apps for Android. Since the generated programs are uploaded to 
official or additional application repositories without being thoroughly reviewed, it is clear that 
there is another serious security flaw. Because of the security issues brought on by the big 
developer community and the operating system, Android is the main focus of malware makers. 
Unfortunately, because of the popularity of Android, fraudsters have been enticed to embed 
malware in a number of applications, seriously endangering the security of users. These four 
categories—hardware-based assaults, kernel-based attacks, hardware abstraction layer-based 
attacks, and application-based attacks are typically used to evaluate Android malware. These 
malwares cause a variety of material and non-material harms, including illegal user behavior, 
enlisting users in botnet attacks, obtaining sensitive user data, generating revenue from data 
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collection, and harming device hardware [3][4]. To prevent these effects, academics and security 
companies work to develop malware detection systems with high performance rates. Derived 
from the words “malicious” and “software”, malware is defined as software that gains 
unauthorized access to a system. Another definition of malware is random code that purposefully 
alters or destroys the intended functions. Malware includes Trojan horses, spyware, viruses, and 
other intervening scripts. Malware is also defined as generating massive traffic that contaminates 
system and data directories, drivers' boot sections, and executable routines, resulting in Denial of 
Service (DoS) [5][6]. These programs contaminate the memory when the user runs the file and 
then move on to other directories that are processed later. In operating systems with security 
flaws, they can take over the system and contaminate other systems on the network. Typically, 
this type of virus impairs performance. When applying machine learning algorithms to Android 
malware classification, it is important to balance the efficiency and accuracy of the algorithm. 
Shallow machine learning algorithms typically create simpler classification models that are easy 
to implement and fast to run but tend to provide lower accuracy [7][8]. More intricate machine 
learning models, on the other hand, frequently provide better detection accuracy but have lower 
efficiency. Many techniques aim to strike a compromise between these two factors. Algorithms 
including LR (Logistic Regression), Naive Bayes, SVM (Support Vector Machine), kNN (k-
Nearest Neighbors), Decision Tree and Random Forest are well-suited for detecting Android 
malware using shallow machine learning techniques. LR method is a type of generalized linear 
regression used to estimate the probability of a particular outcome. Its aim is to identify the best 
model that explains the relationship between a dependent variable and various independent 
variables. Built on Bayes' Theorem, NB algorithm assumes that the features are conditionally 
independent of each other, which simplifies classification tasks. It works well in scenarios where 
this assumption holds true. A supervised learning model called SVM determines the appropriate 
decision boundary, or hyperplane, to divide the data into distinct classes [9][10]. SVM can also 
handle non-linear classification through the kernel trick, which allows it to transform data into 
higher dimensions for better classification. kNN algorithm classifies a sample based on the 
majority category of its "k" nearest neighbors, assuming that similar data points tend to belong to 
the same category. This method is based on the principle of proximity in feature space. A non-
parametric supervised learning method called a decision tree creates a tree structure from a dataset 
with labels and features. It is appropriate for both classification and regression problems since it 
extracts decision rules and uses the tree to categorize or forecast results. An extension of decision 
trees, Random Forest is an ensemble technique that enhances classification accuracy by 
combining the predictions of several decision trees [11][12]. The final prediction is based on the 
majority vote from all trees. In addition to shallow learning techniques, deep learning models 
show promise for Android malware detection, often providing greater accuracy at the expense of 
higher computational complexity. DBN (Deep Belief Network) is a probabilistic generative 
model made up of multiple restricted Boltzmann machines. It learns a joint distribution between 
observed data and labels through a layer-by-layer training approach, solving the limitations of 
traditional neural networks when dealing with multi-layer structures [13][14]. CNN is a 
feedforward neural network with a deep architecture and convolutional layers. In addition to 
performing shift-invariant classification tasks, such as identifying patterns in photographs or 
other hierarchical data, it excels at feature representation. One kind of neural network made for 
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sequential data is the recurrent neural network (RNN). It is especially helpful for applications like 
time-series analysis and speech recognition because it processes data recursively, which enables 
it to learn intricate, non-linear patterns in sequences. A generator and a discriminator are two 
competing models that make up the potent unsupervised learning framework known as a GAN 
(Generative Adversarial Network). While the discriminator tries to discern between produced and 
genuine data, the generator produces data. Through adversarial training, GANs can produce high-
quality outputs from complex distributions. Furthermore, MMML (Multimodal Machine 
Learning) focuses on integrating and processing data from various sources or modalities. It 
enables tasks like collaborative learning, representation learning and modality conversion, 
providing improved flexibility in handling different types of data. Multiple Kernel Learning 
combines many kernel functions to map and merge features from different sources, enabling more 
effective data representation in a newly combined space. Graph Embedding techniques solve the 
problem of efficiently feeding sparse graph data into machine learning models [15][16]. By 
mapping high-dimensional graph data into low-dimensional dense vectors, this method helps 
overcome the difficulty of handling sparse and high-dimensional graph structures. Lastly, 
Representation Learning transforms raw data into a form that machine learning algorithms can 
effectively process. This method eliminates the need for manual feature extraction, allowing 
models to automatically learn to use and extract features from the data. 
2. Literature Review 
Xie Nannan, et al. (2025) presented Andro-BCFL, a novel Android malware detection solution 
that integrates blockchain and federated learning approaches to improve malware detection speed 
and efficiency [17]. The framework solved the problem of trust among organizations by utilizing 
blockchain technology for secure sharing of malware data. Smart contracts played an important 
role in the system, as they were used to collaboratively manage and update malware databases, 
facilitating the exchange of malware-related information. For the malware detection process, the 
system initially employed Locality Sensitive Hashing, which enabled rapid identification and 
comparison of malware signatures within the blockchain network. This approach helped 
minimize the impact of malware outbreaks in a timely manner. This two-tiered detection method 
improved the overall malware identification capabilities of the system. Experimental results 
demonstrated that Locality Sensitive Hashing achieved a detection accuracy of 93.56% within 
the blockchain, while Federated Learning boosted the detection accuracy to 97.87%, validating 
the effectiveness and practicality of the proposed method. 
Z. Liu, et al. (2025) suggested a novel approach to address AMD's (Android malware detection) 
model aging problem [18]. This approach used pseudo-labeled data into the detection model 
retraining process to lessen the requirement for manual annotation. By identifying their data drift 
patterns, the strategy offered a novel way to assess the data drift of recently emerged samples. 
Data drift scores were then generated using these patterns, which aided in deciding how to blend 
true-labeled and pseudo-labeled data for retraining. This approach maintained the efficacy of 
malware detection while drastically reducing the resources required for annotation. The 
efficiency of the suggested models was shown by a number of tests carried out on long-term 
datasets. The results revealed that the method improved the F-score by approximately 26% when 
predicting previously unseen malware over a nine-year period. 
P. Mishra, et al. (2024) introduced CloudIntellMal, an intelligent malware detection system based 
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on serverless computing, to identify malware that targets Android applications [19]. To store and 
pre-process logs gathered from end-user devices, this framework made use of popular cloud 
services including AWS (Amazon Web Services), EC2 (Elastic Cloud Compute), and S3 (Simple 
Storage Service). It included an optimized feature extraction algorithm that produced feature 
vectors using the "Bag of n-grams" technique. To find dangerous patterns, the cloud infrastructure 
used the machine learning technique. The trained decision model was used on EC2 to categorize 
the apps under observation during the detection phase. Using the Drebin dataset, a framework 
prototype was created and evaluated, yielding encouraging results. 
X. Lu, et al. (2024) presented an Android malware detection model that improved resistance to 
adversarial attacks by using a denoising graph convolutional network (GCN) and was based on 
the Android FCG (function call graph) [20]. The model contained techniques for generating 
vertex feature vectors and simplifying the FCG by decreasing its size. Understanding that 
adversarial tactics could be used by attackers, the model included a subgraph network (SGN) to 
reveal the FCG's structural characteristics and gauge the severity of obfuscation attempts. A 
denoising graph neural network (GNN) was created, and the graph convolution process was 
subjected to the 1-Lipschitz-based denoising technique. The FCG's feature vectors were extracted 
by the GCN, and classification was done using an MLP (multilayer perceptron). Experimental 
results showed that the proposed Android malware detection model outperformed other models 
in terms of F_1 scores, especially when dealing with many levels of obfuscation attacks, thus 
validating its effectiveness in combating such adversarial techniques. 
L. Huang, et al. (2023) suggested a new malware detection framework, WHGDroid, which was 
based on a WHG (weighted heterogeneous graph) to detect malware by identifying implicit 
higher-level semantic connections between Android applications [21]. To thoroughly analyze the 
applications, the method first extracted five different Android entities and five types of 
relationships. These entities and their interrelations were then represented in the form of a 
weighted heterogeneous graph, where the weights reflected the significance of each entity. In 
order to generate homogenous graphs that solely contained nodes connected to apps, the 
framework introduced rich-semantic metapaths to implicitly connect the nodes representing apps. 
To learn the numerical embedding representations of the apps, a graph neural network was used. 
The method was comprehensively compared with five baseline techniques using large datasets 
across many reading scenarios. Experimental findings demonstrated that WHGDroid 
outperformed two leading state-of-the-art methods in every scenario tested. 
P. Tarwireyi, et al. (2023) proposed a multi-audio feature-fusion technique to identify Android 
malware by combining audio features from several viewpoints [22]. This method involved 
converting Android application package files into waveform audio files in order to extract sixty-
three standard audio signal processing features and thirty-nine biologically inspired audio 
features. MFCC (Mel-Frequency Cepstral Coefficients), GFCC (Gammatone Frequency Cepstral 
Coefficients), and BFCC (Bark Frequency Cepstral Coefficient) were the sources of the 
biologically inspired features. Although more research was required, experimental results 
demonstrated the effectiveness of the audio-based features suggested for malware identification. 
Using the conventional eXtreme Gradient Boosting (XGBoost) machine learning algorithm on 
the CICMaldroid 2020 dataset, the suggested approach produced remarkable performance 
metrics: 98.96% accuracy, 99.65% recall, 99.30% F1-score, and 98.14% AUC. 
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S. K. Smmarwar, et al. (2022) introduced "OEL-AMD" [23], a sophisticated and effective system 
for detecting Android malware. In order to eliminate superfluous features and efficiently capture 
statistical traits, this framework made use of statistical feature engineering. Both static and 
dynamic feature layers were subjected to optimal feature selection using BGWO (Binary Grey 
Wolf Optimization), a meta-heuristic technique. After that, a number of base learners were trained 
using adjusted hyperparameters to enhance the ensemble model's capacity for classification via 
inductive reasoning. The overall performance of the model was then totaled. 83.49% for category 
classification and 96.95% for binary classification were the greatest classification accuracys 
attained. 
T. Frenklach, et al. (2021) proposed an ASG (app similarity graph)-based static analysis 
technique for Android apps [24]. The fundamental tenet of this approach was that, as opposed to 
depending solely on expert-driven features, the secret to categorizing an application's behavior 
was to find common, reusable building pieces, such as functions. The approach was shown on a 
fresh VTAz dataset from 2020, a dataset of around 190K apps provided by VirusTotal, and the 
Drebin benchmark in both balanced and unbalanced configurations. In balanced conditions, the 
method's accuracy was 0.975, and its AUC score was 0.987. Additionally, the suggested method's 
analysis and classification time—which ranged from 0.08 to 0.153 seconds per app was 
noticeably less than those of previous examined studies. 
M. K. Alzaylaee, et al. (2020) introduced DL-Droid, a deep learning system that uses stateful 
input generation and dynamic analysis to identify dangerous Android apps. More than 30,000 
programs, both malicious and benign, were used in experiments on actual devices [25]. 
Additionally, the stateful input generation method's detection performance and code coverage 
were compared to the stateless approach, which is more frequently employed in deep learning 
systems. The results showed that DL-Droid outperformed conventional machine learning 
techniques, with a detection rate of up to 97.8% when utilizing only dynamic features and a rate 
of 99.6% when combining both dynamic and static data. The findings also emphasized the 
importance of improved input generation for dynamic analysis, as DL-Droid, with state-based 
input generation, surpassed existing state-of-the-art detection approaches. 
3. Research Methodology 
To forecast the malware, a deep learning-based system is created. Compared to current deep 
learning models, the model framework will be able to predict malware with a high degree of 
accuracy. The following describes the phases of the suggested model: 
3.1.  Dataset input and pre-processing 
Kaggle is thought to be used to collect data for a dataset, and the pre-processing stage is carried 
out to remove any missing or inappropriate values. 
3.2.  Feature Reduction 
In order to mitigate the qualities, this step implements the PSO model. The behavior of the 
particles, such as flocking, swarming, and herding, is taken into consideration when designing 
this algorithm. Each particle has the ability to alter its course in response to its companion's self 
or past flying experiences. Due to its own experience, it knows the location of the meal and 
considers it to be in its personal best position with (P). Furthermore, if a swarm is defined as the 
global best position (G), the particle is regarded as the finest position [5]. The goal of this method 
is to recreate this behavior in order to solve real-time issues. Furthermore, the particles receive 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

 

 
 
 
 

 
466  

assistance in creating a swarm. These particles are useful to fly arbitrarily in the solution space at 
velocity 𝑣௜ at position 𝑥௜ and change their places relied on the personal experience, social and 
cognitive nature. The position and velocity of every particle 𝑖 at 𝑡𝑡ℎ generation are defined as: 

𝑣௜(𝑡 + 1) = 𝑤𝑣௜ + 𝑐ଵ𝑟ଵ൫𝑃௜(𝑡) − 𝑥௜(𝑡)൯ + 𝑐ଶ𝑟ଶ൫𝐺(𝑡) − 𝑥௜(𝑡)൯               (1) 

𝑥௜(𝑡 + 1) = 𝑥௜(𝑡) + 𝑣௜(𝑡 + 1)              (2) 
In this, 𝑤 is employed for inertia weight to regulate the impact of prior velocity; 𝑐ଵ and 𝑐ଶ denote 
the constants, which are utilized to adjust the charm speeds among such social and cognitive 
elements; and the uniform random values are illustrated with 𝑟ଵ and 𝑟ଶin the range [0, 1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Flowchart of PSO 
The flowchart demonstrates the procedure of PSO (Particle Swarm Optimization) in machine 
learning for feature reduction. In the context of feature reduction, each particle in the swarm 
represents a hypothetical subset of features from the original dataset. The initial step is to initialize 
a group of particles with random positions and velocities, where each position corresponds to a 
particular set of features. In the next step, the fitness of individual particles is evaluated using a 
fitness function, usually based on classification accuracy or error rate. Specifically, this 
evaluation determines each particle’s personal best position, known as pBest. It also checks 
whether the particle’s current position offers better performance than its previous pBest. If so, the 
pBest is updated with the current position. Among all pBest values, the one with the best 
performance is selected as the global best (gBest), representing the best solution discovered by 
the entire swarm. The velocity of each particle is influenced by its own pBest, the swarm’s gBest, 
and a random component that promotes exploration of the feature space. These velocities are the 
mechanism through which the new positions of the particles are obtained, consequently, the 
feature subsets being considered change. By means of this model, the whole operation is repeated 
until the condition is met, in which case the particles move towards the most appropriate feature 
subsets according to the results received. Every iteration, the algorithm verifies that the stopping 
criterion (reaching a fixed number of iterations, or achieving a desired accuracy) has been met. 
Once the aim has been achieved, the processing stops, and the best features are selected. This 
PSO-based technique effectively eliminates redundant information by discarding irrelevant 
features, thereby enhancing model efficiency and reducing computational costs. 

BEGIN 

Initialize group of particles 

Evaluate pBest for each 
particle 

Update pBest 

True 
Current position is 
better than pBest? 

Assign pBeat to gBest 

Update particle position 

Compute velocity 

False 

Target reached? END 

True False 
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3.3.  Classification 
This phase uses a hybrid deep learning framework that combines CNN and LSTM. A CNN is a 
large network that repeats and interprets stimuli similarly to how the visual cortex of the brain 
does. It has several hidden layers and is a deep neural network as well. CNN's output layer 
frequently uses neural networks for multiclass categorization. CNN uses a feature extractor 
during the training phase rather than performing it by hand. CNN's feature extractor is composed 
of distinct neural network types, each of whose weights is established during training. CNN 
enhances picture identification when its neural network feature extraction is more detailed (has 
more layers), but at the cost of the learning process complexity that previously made CNN 
underappreciated and ineffectual. While other neural networks classify features, convolutional 
neural networks aid in the extraction of the input images' characteristics. This method uses the 
input image as its starting point. The network traffic is categorized using the feature signals that 
were recovered. This procedure employed a bi-directional model for classification. The Softmax 
Regression Layer connects the Forward LSTM and Backward LSTM of Bi-Long Short-Term 
Memory. Due to the normal LSTM network's lack of future context information and inability to 
learn all the sequences, the prediction effect is lost when dealing with time series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Proposed Model 
The process of predicting malware of the proposed model is demonstrated Figure 2. First of all, 
the data of network traffic are utilized as input in the proposed model and are pre-processed for 
removing the missing values. After that, the PSO (Particle Swarm Optimization) algorithm is 
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implemented for mitigating the features. The data is split into two sets: training and testing. CNN 
models are used to extract features from the original collection, while bi-directional models are 
used afterward. The training system is then developed. The training model is created directly in 
the latter set. The testing data is then forecasted. Finally, a variety of criteria are used to calculate 
the performance, including recall, accuracy, and precision. Thus, the outcomes are attained. 
 
4. Result and Discussion 
To classify network traffic, the suggested model, which combines CNN and bidirectional LSTM 
is put into practice. Accuracy, precision, and recall are used to analyze performance using the 
Kaggle dataset. 
4.1. Performance Analysis Parameters 
The proposed model is implemented and results of the method is compared in terms of accuracy, 
precision and recall. The detail description is the parameters is given below: -  
Accuracy: The number of correctly classified points divided by the total number of points 
multiplied by 100 is the definition of accuracy. 
 

Accuracy = 
୒୳୫ୠୣ୰ ୭୤ ୮୭୧୬୲ୱ ୡ୭୰୰ୣୡ୲୪୷ ୡ୪ୟୱୱ୧୤୧ୣୢ

୘୭୲ୟ୪ ୒୳୫ୠୣ୰ ୭୤ ୮୭୧୬୲ୱ 
*100 -(3)  

Precision: Precision, also known as positive predictive value, is the percentage of pertinent 
occurrences among the recovered examples in recognizing patterns, information retrieval, and 
binary classification.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
− (4) 

 
Recall: The percentage of pertinent examples that have been recovered out of all the relevant 
instances is known as recall.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
− (5) 

4.3. Results  
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Figure 3: Accuracy of training and testing 
As shown in figure 3, the model training and test accuracy is plotted correspond to different 
number of epoch values.  The model training accuracy is achieved upto 90 percent which 
represents that model highly trained to generate desired results for prediction. 

 
Figure 4: Training and test Model loss 
As shown in figure 4, the model training and test loss is representing correspond to number of 
epoch values. The model loss is reduced to 2 percent for the model training. 

 
Figure 5: Confusion Matrix  
Figure 5 illustrates the confusion matrix between the expected and real labels. Plotting of 
projected labels against true labels shows the true positive and false positive values. 
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Figure 6: ROC Curve 
As shown in figure 6, the AUC-ROC curve is drawn for each class in the dataset. The x axis 
shows that false positive rate and y axis shows that true positive rate. The ROC curve of each 
class touch to above 95 percent for the malware detection.  
Table 1: Performance Analysis  
Models  Accuracy Precision  Recall 
P. Faruki [5] 97.45 97 97 
R. B. Hadiprakoso 
[13] 

93.67 93 93 

X. Lu, J. Zhao [20] 95.89 95 95 
S. K. Smmarwar, 
[23] 

94.12 94 94 

Proposed  98 98 98 
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Figure 7: Performance Analysis  
As shown in figure 7, the performance analysis of proposed model is compared with existing 
models. It is analysed that proposed model achieves accuracy of up to 98 percent which is approx. 
2 percent higher than existing models. 
Conclusion  
As malware detection continues to grow rapidly, accurately predicting future patterns is vital for 
optimizing application management and performance. CNN and LSTM networks are used in this 
study's hybrid deep learning framework to increase malware prediction accuracy. The CNN 
component is utilized for feature extraction, capturing spatial relationships within the data, while 
LSTM effectively models temporal dependencies to identify long-term traffic trends. The 
suggested method outperforms traditional deep learning models in terms of predicting accuracy 
by utilizing CNN's capacity to extract important features and LSTM's prowess in managing 
sequential data. The Kaggle dataset is used to construct the framework, and accuracy, precision, 
and recall are assessed. According to experimental results, the model outperforms current 
approaches and reaches an amazing 98% accuracy, proving its usefulness in real-time network 
traffic forecasting. 
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