
ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

461

HYBRID DEEP LEARNING MODEL FOR MALWARE DETECTION IN ANDROID
APPLICATIONS

Paramjeet Kaur1, Dr.Vijay Laxmi2

1Research Scholar, Department of Computer Applications Guru Kashi University talwandi
Sabo(Bathinda)

2Professor Faculty of Computer Applications Guru Kashi University talwandi Sabo(Bathinda)

ABSTACT:
With the rapid growth of applications, accurately predicting future traffic patterns is crucial for
efficient application management and optimization. This research presents a hybrid deep learning
framework that combines CNN (Convolutional Neural Networks) and LSTM (Long Short-Term
Memory) networks to enhance the accuracy of network traffic prediction. CNN is leveraged for
feature extraction, capturing spatial dependencies within the data, while LSTM is employed to
model temporal dependencies, enabling the framework to effectively learn long-term patterns in
network traffic. Unlike traditional deep learning models, the proposed hybrid approach improves
prediction accuracy by utilizing CNN's capability to extract essential features and LSTM's
strength in handling sequential dependencies. The framework significantly outperforms existing
deep learning models by addressing the challenges of feature extraction complexity and sequence
learning, making it a robust solution for real-time network traffic forecasting. The Kaggle dataset
is used to test the suggested model for malware prediction. The accuracy, precision, and recall of
the suggested model are evaluated. According to analysis, the suggested model predicts malware
with a 98 percent accuracy rate.
Keywords
Malware Detection, LSTM, CNN, PSO
1. Introduction
The use of smartphones has significantly expanded with the advancement of communication
technologies. According to the latest data from International Data Corporation, Android's market
share achieved 86.6% and 1.3823 billion smartphones were shipped worldwide in the fourth
quarter of 2019. Additionally, the report projects that the market share will increase to 87.1% in
2023. Google created the open-source, Linux-based mobile operating system known as Android.
Being an open-source operating system has numerous benefits, but as its security approach is
reliant on permission tagging, there are certain security issues [1][2]. Many programmers create
both official and unofficial apps for Android. Since the generated programs are uploaded to
official or additional application repositories without being thoroughly reviewed, it is clear that
there is another serious security flaw. Because of the security issues brought on by the big
developer community and the operating system, Android is the main focus of malware makers.
Unfortunately, because of the popularity of Android, fraudsters have been enticed to embed
malware in a number of applications, seriously endangering the security of users. These four
categories—hardware-based assaults, kernel-based attacks, hardware abstraction layer-based
attacks, and application-based attacks are typically used to evaluate Android malware. These
malwares cause a variety of material and non-material harms, including illegal user behavior,
enlisting users in botnet attacks, obtaining sensitive user data, generating revenue from data

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

462

collection, and harming device hardware [3][4]. To prevent these effects, academics and security
companies work to develop malware detection systems with high performance rates. Derived
from the words “malicious” and “software”, malware is defined as software that gains
unauthorized access to a system. Another definition of malware is random code that purposefully
alters or destroys the intended functions. Malware includes Trojan horses, spyware, viruses, and
other intervening scripts. Malware is also defined as generating massive traffic that contaminates
system and data directories, drivers' boot sections, and executable routines, resulting in Denial of
Service (DoS) [5][6]. These programs contaminate the memory when the user runs the file and
then move on to other directories that are processed later. In operating systems with security
flaws, they can take over the system and contaminate other systems on the network. Typically,
this type of virus impairs performance. When applying machine learning algorithms to Android
malware classification, it is important to balance the efficiency and accuracy of the algorithm.
Shallow machine learning algorithms typically create simpler classification models that are easy
to implement and fast to run but tend to provide lower accuracy [7][8]. More intricate machine
learning models, on the other hand, frequently provide better detection accuracy but have lower
efficiency. Many techniques aim to strike a compromise between these two factors. Algorithms
including LR (Logistic Regression), Naive Bayes, SVM (Support Vector Machine), kNN (k-
Nearest Neighbors), Decision Tree and Random Forest are well-suited for detecting Android
malware using shallow machine learning techniques. LR method is a type of generalized linear
regression used to estimate the probability of a particular outcome. Its aim is to identify the best
model that explains the relationship between a dependent variable and various independent
variables. Built on Bayes' Theorem, NB algorithm assumes that the features are conditionally
independent of each other, which simplifies classification tasks. It works well in scenarios where
this assumption holds true. A supervised learning model called SVM determines the appropriate
decision boundary, or hyperplane, to divide the data into distinct classes [9][10]. SVM can also
handle non-linear classification through the kernel trick, which allows it to transform data into
higher dimensions for better classification. kNN algorithm classifies a sample based on the
majority category of its "k" nearest neighbors, assuming that similar data points tend to belong to
the same category. This method is based on the principle of proximity in feature space. A non-
parametric supervised learning method called a decision tree creates a tree structure from a dataset
with labels and features. It is appropriate for both classification and regression problems since it
extracts decision rules and uses the tree to categorize or forecast results. An extension of decision
trees, Random Forest is an ensemble technique that enhances classification accuracy by
combining the predictions of several decision trees [11][12]. The final prediction is based on the
majority vote from all trees. In addition to shallow learning techniques, deep learning models
show promise for Android malware detection, often providing greater accuracy at the expense of
higher computational complexity. DBN (Deep Belief Network) is a probabilistic generative
model made up of multiple restricted Boltzmann machines. It learns a joint distribution between
observed data and labels through a layer-by-layer training approach, solving the limitations of
traditional neural networks when dealing with multi-layer structures [13][14]. CNN is a
feedforward neural network with a deep architecture and convolutional layers. In addition to
performing shift-invariant classification tasks, such as identifying patterns in photographs or
other hierarchical data, it excels at feature representation. One kind of neural network made for

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

463

sequential data is the recurrent neural network (RNN). It is especially helpful for applications like
time-series analysis and speech recognition because it processes data recursively, which enables
it to learn intricate, non-linear patterns in sequences. A generator and a discriminator are two
competing models that make up the potent unsupervised learning framework known as a GAN
(Generative Adversarial Network). While the discriminator tries to discern between produced and
genuine data, the generator produces data. Through adversarial training, GANs can produce high-
quality outputs from complex distributions. Furthermore, MMML (Multimodal Machine
Learning) focuses on integrating and processing data from various sources or modalities. It
enables tasks like collaborative learning, representation learning and modality conversion,
providing improved flexibility in handling different types of data. Multiple Kernel Learning
combines many kernel functions to map and merge features from different sources, enabling more
effective data representation in a newly combined space. Graph Embedding techniques solve the
problem of efficiently feeding sparse graph data into machine learning models [15][16]. By
mapping high-dimensional graph data into low-dimensional dense vectors, this method helps
overcome the difficulty of handling sparse and high-dimensional graph structures. Lastly,
Representation Learning transforms raw data into a form that machine learning algorithms can
effectively process. This method eliminates the need for manual feature extraction, allowing
models to automatically learn to use and extract features from the data.
2. Literature Review
Xie Nannan, et al. (2025) presented Andro-BCFL, a novel Android malware detection solution
that integrates blockchain and federated learning approaches to improve malware detection speed
and efficiency [17]. The framework solved the problem of trust among organizations by utilizing
blockchain technology for secure sharing of malware data. Smart contracts played an important
role in the system, as they were used to collaboratively manage and update malware databases,
facilitating the exchange of malware-related information. For the malware detection process, the
system initially employed Locality Sensitive Hashing, which enabled rapid identification and
comparison of malware signatures within the blockchain network. This approach helped
minimize the impact of malware outbreaks in a timely manner. This two-tiered detection method
improved the overall malware identification capabilities of the system. Experimental results
demonstrated that Locality Sensitive Hashing achieved a detection accuracy of 93.56% within
the blockchain, while Federated Learning boosted the detection accuracy to 97.87%, validating
the effectiveness and practicality of the proposed method.
Z. Liu, et al. (2025) suggested a novel approach to address AMD's (Android malware detection)
model aging problem [18]. This approach used pseudo-labeled data into the detection model
retraining process to lessen the requirement for manual annotation. By identifying their data drift
patterns, the strategy offered a novel way to assess the data drift of recently emerged samples.
Data drift scores were then generated using these patterns, which aided in deciding how to blend
true-labeled and pseudo-labeled data for retraining. This approach maintained the efficacy of
malware detection while drastically reducing the resources required for annotation. The
efficiency of the suggested models was shown by a number of tests carried out on long-term
datasets. The results revealed that the method improved the F-score by approximately 26% when
predicting previously unseen malware over a nine-year period.
P. Mishra, et al. (2024) introduced CloudIntellMal, an intelligent malware detection system based

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

464

on serverless computing, to identify malware that targets Android applications [19]. To store and
pre-process logs gathered from end-user devices, this framework made use of popular cloud
services including AWS (Amazon Web Services), EC2 (Elastic Cloud Compute), and S3 (Simple
Storage Service). It included an optimized feature extraction algorithm that produced feature
vectors using the "Bag of n-grams" technique. To find dangerous patterns, the cloud infrastructure
used the machine learning technique. The trained decision model was used on EC2 to categorize
the apps under observation during the detection phase. Using the Drebin dataset, a framework
prototype was created and evaluated, yielding encouraging results.
X. Lu, et al. (2024) presented an Android malware detection model that improved resistance to
adversarial attacks by using a denoising graph convolutional network (GCN) and was based on
the Android FCG (function call graph) [20]. The model contained techniques for generating
vertex feature vectors and simplifying the FCG by decreasing its size. Understanding that
adversarial tactics could be used by attackers, the model included a subgraph network (SGN) to
reveal the FCG's structural characteristics and gauge the severity of obfuscation attempts. A
denoising graph neural network (GNN) was created, and the graph convolution process was
subjected to the 1-Lipschitz-based denoising technique. The FCG's feature vectors were extracted
by the GCN, and classification was done using an MLP (multilayer perceptron). Experimental
results showed that the proposed Android malware detection model outperformed other models
in terms of F_1 scores, especially when dealing with many levels of obfuscation attacks, thus
validating its effectiveness in combating such adversarial techniques.
L. Huang, et al. (2023) suggested a new malware detection framework, WHGDroid, which was
based on a WHG (weighted heterogeneous graph) to detect malware by identifying implicit
higher-level semantic connections between Android applications [21]. To thoroughly analyze the
applications, the method first extracted five different Android entities and five types of
relationships. These entities and their interrelations were then represented in the form of a
weighted heterogeneous graph, where the weights reflected the significance of each entity. In
order to generate homogenous graphs that solely contained nodes connected to apps, the
framework introduced rich-semantic metapaths to implicitly connect the nodes representing apps.
To learn the numerical embedding representations of the apps, a graph neural network was used.
The method was comprehensively compared with five baseline techniques using large datasets
across many reading scenarios. Experimental findings demonstrated that WHGDroid
outperformed two leading state-of-the-art methods in every scenario tested.
P. Tarwireyi, et al. (2023) proposed a multi-audio feature-fusion technique to identify Android
malware by combining audio features from several viewpoints [22]. This method involved
converting Android application package files into waveform audio files in order to extract sixty-
three standard audio signal processing features and thirty-nine biologically inspired audio
features. MFCC (Mel-Frequency Cepstral Coefficients), GFCC (Gammatone Frequency Cepstral
Coefficients), and BFCC (Bark Frequency Cepstral Coefficient) were the sources of the
biologically inspired features. Although more research was required, experimental results
demonstrated the effectiveness of the audio-based features suggested for malware identification.
Using the conventional eXtreme Gradient Boosting (XGBoost) machine learning algorithm on
the CICMaldroid 2020 dataset, the suggested approach produced remarkable performance
metrics: 98.96% accuracy, 99.65% recall, 99.30% F1-score, and 98.14% AUC.

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

465

S. K. Smmarwar, et al. (2022) introduced "OEL-AMD" [23], a sophisticated and effective system
for detecting Android malware. In order to eliminate superfluous features and efficiently capture
statistical traits, this framework made use of statistical feature engineering. Both static and
dynamic feature layers were subjected to optimal feature selection using BGWO (Binary Grey
Wolf Optimization), a meta-heuristic technique. After that, a number of base learners were trained
using adjusted hyperparameters to enhance the ensemble model's capacity for classification via
inductive reasoning. The overall performance of the model was then totaled. 83.49% for category
classification and 96.95% for binary classification were the greatest classification accuracys
attained.
T. Frenklach, et al. (2021) proposed an ASG (app similarity graph)-based static analysis
technique for Android apps [24]. The fundamental tenet of this approach was that, as opposed to
depending solely on expert-driven features, the secret to categorizing an application's behavior
was to find common, reusable building pieces, such as functions. The approach was shown on a
fresh VTAz dataset from 2020, a dataset of around 190K apps provided by VirusTotal, and the
Drebin benchmark in both balanced and unbalanced configurations. In balanced conditions, the
method's accuracy was 0.975, and its AUC score was 0.987. Additionally, the suggested method's
analysis and classification time—which ranged from 0.08 to 0.153 seconds per app was
noticeably less than those of previous examined studies.
M. K. Alzaylaee, et al. (2020) introduced DL-Droid, a deep learning system that uses stateful
input generation and dynamic analysis to identify dangerous Android apps. More than 30,000
programs, both malicious and benign, were used in experiments on actual devices [25].
Additionally, the stateful input generation method's detection performance and code coverage
were compared to the stateless approach, which is more frequently employed in deep learning
systems. The results showed that DL-Droid outperformed conventional machine learning
techniques, with a detection rate of up to 97.8% when utilizing only dynamic features and a rate
of 99.6% when combining both dynamic and static data. The findings also emphasized the
importance of improved input generation for dynamic analysis, as DL-Droid, with state-based
input generation, surpassed existing state-of-the-art detection approaches.
3. Research Methodology
To forecast the malware, a deep learning-based system is created. Compared to current deep
learning models, the model framework will be able to predict malware with a high degree of
accuracy. The following describes the phases of the suggested model:
3.1. Dataset input and pre-processing
Kaggle is thought to be used to collect data for a dataset, and the pre-processing stage is carried
out to remove any missing or inappropriate values.
3.2. Feature Reduction
In order to mitigate the qualities, this step implements the PSO model. The behavior of the
particles, such as flocking, swarming, and herding, is taken into consideration when designing
this algorithm. Each particle has the ability to alter its course in response to its companion's self
or past flying experiences. Due to its own experience, it knows the location of the meal and
considers it to be in its personal best position with (P). Furthermore, if a swarm is defined as the
global best position (G), the particle is regarded as the finest position [5]. The goal of this method
is to recreate this behavior in order to solve real-time issues. Furthermore, the particles receive

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

466

assistance in creating a swarm. These particles are useful to fly arbitrarily in the solution space at
velocity 𝑣௜ at position 𝑥௜ and change their places relied on the personal experience, social and
cognitive nature. The position and velocity of every particle 𝑖 at 𝑡𝑡ℎ generation are defined as:

𝑣௜(𝑡 + 1) = 𝑤𝑣௜ + 𝑐ଵ𝑟ଵ൫𝑃௜(𝑡) − 𝑥௜(𝑡)൯ + 𝑐ଶ𝑟ଶ൫𝐺(𝑡) − 𝑥௜(𝑡)൯ (1)

𝑥௜(𝑡 + 1) = 𝑥௜(𝑡) + 𝑣௜(𝑡 + 1) (2)
In this, 𝑤 is employed for inertia weight to regulate the impact of prior velocity; 𝑐ଵ and 𝑐ଶ denote
the constants, which are utilized to adjust the charm speeds among such social and cognitive
elements; and the uniform random values are illustrated with 𝑟ଵ and 𝑟ଶin the range [0, 1].

Figure 1: Flowchart of PSO
The flowchart demonstrates the procedure of PSO (Particle Swarm Optimization) in machine
learning for feature reduction. In the context of feature reduction, each particle in the swarm
represents a hypothetical subset of features from the original dataset. The initial step is to initialize
a group of particles with random positions and velocities, where each position corresponds to a
particular set of features. In the next step, the fitness of individual particles is evaluated using a
fitness function, usually based on classification accuracy or error rate. Specifically, this
evaluation determines each particle’s personal best position, known as pBest. It also checks
whether the particle’s current position offers better performance than its previous pBest. If so, the
pBest is updated with the current position. Among all pBest values, the one with the best
performance is selected as the global best (gBest), representing the best solution discovered by
the entire swarm. The velocity of each particle is influenced by its own pBest, the swarm’s gBest,
and a random component that promotes exploration of the feature space. These velocities are the
mechanism through which the new positions of the particles are obtained, consequently, the
feature subsets being considered change. By means of this model, the whole operation is repeated
until the condition is met, in which case the particles move towards the most appropriate feature
subsets according to the results received. Every iteration, the algorithm verifies that the stopping
criterion (reaching a fixed number of iterations, or achieving a desired accuracy) has been met.
Once the aim has been achieved, the processing stops, and the best features are selected. This
PSO-based technique effectively eliminates redundant information by discarding irrelevant
features, thereby enhancing model efficiency and reducing computational costs.

BEGIN

Initialize group of particles

Evaluate pBest for each
particle

Update pBest

True
Current position is
better than pBest?

Assign pBeat to gBest

Update particle position

Compute velocity

False

Target reached? END

True False

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

467

3.3. Classification
This phase uses a hybrid deep learning framework that combines CNN and LSTM. A CNN is a
large network that repeats and interprets stimuli similarly to how the visual cortex of the brain
does. It has several hidden layers and is a deep neural network as well. CNN's output layer
frequently uses neural networks for multiclass categorization. CNN uses a feature extractor
during the training phase rather than performing it by hand. CNN's feature extractor is composed
of distinct neural network types, each of whose weights is established during training. CNN
enhances picture identification when its neural network feature extraction is more detailed (has
more layers), but at the cost of the learning process complexity that previously made CNN
underappreciated and ineffectual. While other neural networks classify features, convolutional
neural networks aid in the extraction of the input images' characteristics. This method uses the
input image as its starting point. The network traffic is categorized using the feature signals that
were recovered. This procedure employed a bi-directional model for classification. The Softmax
Regression Layer connects the Forward LSTM and Backward LSTM of Bi-Long Short-Term
Memory. Due to the normal LSTM network's lack of future context information and inability to
learn all the sequences, the prediction effect is lost when dealing with time series.

Figure 2: Proposed Model
The process of predicting malware of the proposed model is demonstrated Figure 2. First of all,
the data of network traffic are utilized as input in the proposed model and are pre-processed for
removing the missing values. After that, the PSO (Particle Swarm Optimization) algorithm is

Apply Bidirectional LSTM Model

Trained Model Generated

Predict the Test Data

Analyse performance in terms of accuracy,
precision and recall

STOP

START

Input the dataset and pre-process to remove
missing or redundant values

Apply PSO for the feature reduction

Apply Convolution layer for the feature extraction

Divide dataset
into training and

testing

Training Set Test Set

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

468

implemented for mitigating the features. The data is split into two sets: training and testing. CNN
models are used to extract features from the original collection, while bi-directional models are
used afterward. The training system is then developed. The training model is created directly in
the latter set. The testing data is then forecasted. Finally, a variety of criteria are used to calculate
the performance, including recall, accuracy, and precision. Thus, the outcomes are attained.

4. Result and Discussion
To classify network traffic, the suggested model, which combines CNN and bidirectional LSTM
is put into practice. Accuracy, precision, and recall are used to analyze performance using the
Kaggle dataset.
4.1. Performance Analysis Parameters
The proposed model is implemented and results of the method is compared in terms of accuracy,
precision and recall. The detail description is the parameters is given below: -
Accuracy: The number of correctly classified points divided by the total number of points
multiplied by 100 is the definition of accuracy.

Accuracy =
୒୳୫ୠୣ୰ ୭୤ ୮୭୧୬୲ୱ ୡ୭୰୰ୣୡ୲୪୷ ୡ୪ୟୱୱ୧୤୧ୣୢ

୘୭୲ୟ୪ ୒୳୫ୠୣ୰ ୭୤ ୮୭୧୬୲ୱ
*100 -(3)

Precision: Precision, also known as positive predictive value, is the percentage of pertinent
occurrences among the recovered examples in recognizing patterns, information retrieval, and
binary classification.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
− (4)

Recall: The percentage of pertinent examples that have been recovered out of all the relevant
instances is known as recall.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
− (5)

4.3. Results

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

469

Figure 3: Accuracy of training and testing
As shown in figure 3, the model training and test accuracy is plotted correspond to different
number of epoch values. The model training accuracy is achieved upto 90 percent which
represents that model highly trained to generate desired results for prediction.

Figure 4: Training and test Model loss
As shown in figure 4, the model training and test loss is representing correspond to number of
epoch values. The model loss is reduced to 2 percent for the model training.

Figure 5: Confusion Matrix
Figure 5 illustrates the confusion matrix between the expected and real labels. Plotting of
projected labels against true labels shows the true positive and false positive values.

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

470

Figure 6: ROC Curve
As shown in figure 6, the AUC-ROC curve is drawn for each class in the dataset. The x axis
shows that false positive rate and y axis shows that true positive rate. The ROC curve of each
class touch to above 95 percent for the malware detection.
Table 1: Performance Analysis
Models Accuracy Precision Recall
P. Faruki [5] 97.45 97 97
R. B. Hadiprakoso
[13]

93.67 93 93

X. Lu, J. Zhao [20] 95.89 95 95
S. K. Smmarwar,
[23]

94.12 94 94

Proposed 98 98 98

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

471

Figure 7: Performance Analysis
As shown in figure 7, the performance analysis of proposed model is compared with existing
models. It is analysed that proposed model achieves accuracy of up to 98 percent which is approx.
2 percent higher than existing models.
Conclusion
As malware detection continues to grow rapidly, accurately predicting future patterns is vital for
optimizing application management and performance. CNN and LSTM networks are used in this
study's hybrid deep learning framework to increase malware prediction accuracy. The CNN
component is utilized for feature extraction, capturing spatial relationships within the data, while
LSTM effectively models temporal dependencies to identify long-term traffic trends. The
suggested method outperforms traditional deep learning models in terms of predicting accuracy
by utilizing CNN's capacity to extract important features and LSTM's prowess in managing
sequential data. The Kaggle dataset is used to construct the framework, and accuracy, precision,
and recall are assessed. According to experimental results, the model outperforms current
approaches and reaches an amazing 98% accuracy, proving its usefulness in real-time network
traffic forecasting.
References
[1] K. Xu, Y. Li and R. H. Deng, "ICCDetector: ICC-Based Malware Detection on Android," in
IEEE Transactions on Information Forensics and Security, vol. 11, no. 6, pp. 1252-1264, June
2016
[2] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma and Z. Liang, "Monet: A User-Oriented Behavior-
Based Malware Variants Detection System for Android," in IEEE Transactions on Information
Forensics and Security, vol. 12, no. 5, pp. 1103-1112, May 2017
[3] Z. Yuan, Y. Lu and Y. Xue, "Droiddetector: android malware characterization and detection
using deep learning," in Tsinghua Science and Technology, vol. 21, no. 1, pp. 114-123, Feb. 2016
[4] A. Guerra-Manzanares, M. Luckner and H. Bahsi, “Android malware concept drift using
system calls: Detection, characterization and challenges”, Expert Systems with Applications, vol.
12, no. 5, pp. 859-867, 21 April 2022
[5] P. Faruki et al., "Android Security: A Survey of Issues, Malware Penetration, and Defenses,"

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

472

in IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 998-1022, Secondquarter 2015
[6] Q. Han, V. S. Subrahmanian and Y. Xiong, "Android Malware Detection via (Somewhat)
Robust Irreversible Feature Transformations," in IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3511-3525, 2020
[7] S. H. Moghaddam and M. Abbaspour, "Sensitivity analysis of static features for Android
malware detection," 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, pp.
920-924
[8] G. Canbek, S. Sagiroglu and T. Taskaya Temizel, "New Techniques in Profiling Big Datasets
for Machine Learning with a Concise Review of Android Mobile Malware Datasets," 2018
International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism
(IBIGDELFT), 2018, pp. 117-121
[9] J. H. Abawajy and A. Kelarev, "Iterative Classifier Fusion System for the Detection of
Android Malware," in IEEE Transactions on Big Data, vol. 5, no. 3, pp. 282-292, 1 Sept. 2019
[10] M. Samara and E. -S. M. El-Alfy, "Benchmarking Open-Source Android Malware Detection
Tools," 2019 2nd IEEE Middle East and North Africa COMMunications Conference
(MENACOMM), 2019, pp. 1-6,
[11] Y. Xue et al., "Auditing Anti-Malware Tools by Evolving Android Malware and Dynamic
Loading Technique," in IEEE Transactions on Information Forensics and Security, vol. 12, no.
7, pp. 1529-1544, July 2017
[12] Y. Zhang et al., "Familial Clustering for Weakly-Labeled Android Malware Using Hybrid
Representation Learning," in IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 3401-3414, 2020
[13] R. B. Hadiprakoso, I. K. S. Buana and Y. R. Pramadi, "Android Malware Detection Using
Hybrid-Based Analysis & Deep Neural Network," 2020 3rd International Conference on
Information and Communications Technology (ICOIACT), 2020, pp. 252-256
[14] S. Liang and X. Du, "Permission-combination-based scheme for Android mobile malware
detection," 2014 IEEE International Conference on Communications (ICC), 2014, pp. 2301-2306
[15] E. C. Bayazit, O. Koray Sahingoz and B. Dogan, "Malware Detection in Android Systems
with Traditional Machine Learning Models: A Survey," 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications (HORA), 2020, pp. 1-8
[16] J. Wu and A. Kanai, "Utilizing obfuscation information in deep learning-based Android
malware detection," 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), 2021, pp. 1321-1326
[17] Xie Nannan, Mu Linyang, Wang Yangfan, and M. Yubo, “Andro-BCFL: Blockchain and
federated learning-based Android malware detection,” Computers & Electrical Engineering, vol.
122, pp. 109948–109948, Dec. 2025, doi: https://doi.org/10.1016/j.compeleceng.2024.109948.
[18] Z. Liu et al., “LDCDroid: Learning data drift characteristics for handling the model aging
problem in Android malware detection,” Computers & Security, vol. 150, p. 104294, Mar. 2025,
doi: https://doi.org/10.1016/j.cose.2024.104294.
[19] P. Mishra et al., “CloudIntellMal: An advanced cloud based intelligent malware detection
framework to analyze android applications,” Computers & Electrical Engineering, vol. 119, pp.
109483–109483, Oct. 2024, doi: https://doi.org/10.1016/j.compeleceng.2024.109483.
[20] X. Lu, J. Zhao, S. Zhu, and P. Lio, “SNDGCN: Robust Android malware detection based on

ISSN:2731-538X | E-ISSN:2731-5398
Vol. 19 No. 01 (2025)

473

subgraph network and denoising GCN network,” Expert Systems with Applications, vol. 250, pp.
123922–123922, Apr. 2024, doi: https://doi.org/10.1016/j.eswa.2024.123922.
[21] L. Huang, J. Xue, Y. Wang, Z. Liu, J. Chen, and Z. Kong, “WHGDroid: Effective android
malware detection based on weighted heterogeneous graph,” Journal of Information Security and
Applications, vol. 77, pp. 103556–103556, Jul. 2023, doi:
https://doi.org/10.1016/j.jisa.2023.103556.
[22] P. Tarwireyi, A. Terzoli, and M. O. Adigun, “Using Multi-Audio Feature Fusion for Android
Malware Detection,” Computers & Security, p. 103282, May 2023, doi:
https://doi.org/10.1016/j.cose.2023.103282.
[23] S. K. Smmarwar, G. P. Gupta, S. Kumar, and P. Kumar, “An optimized and efficient android
malware detection framework for future sustainable computing,” Sustainable Energy
Technologies and Assessments, vol. 54, p. 102852, Dec. 2022, doi:
https://doi.org/10.1016/j.seta.2022.102852.
[24] T. Frenklach, D. Cohen, A. Shabtai, and R. Puzis, “Android malware detection via an app
similarity graph,” Computers & Security, vol. 109, p. 102386, Oct. 2021, doi:
https://doi.org/10.1016/j.cose.2021.102386.
[25] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android
malware detection using real devices,” Computers & Security, vol. 89, p. 101663, Feb. 2020, doi:
https://doi.org/10.1016/j.cose.2019.101663.

