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Abstract 
The rapid urbanization and rising population density in cities have significantly increased traffic congestion, 
leading to adverse effects on economic productivity, environmental sustainability, and quality of life. 
Accurate traffic prediction is crucial for mitigating these challenges and ensuring efficient transportation 
systems. Traditional traffic forecasting models often struggle with nonlinear traffic patterns, which has 
propelled the adoption of advanced artificial intelligence (AI) techniques, particularly machine learning (ML) 
and deep learning (DL). These approaches excel in processing large, dynamic datasets and capturing intricate 
spatial-temporal dependencies in traffic data. 
Ensemble learning methods, which combine multiple ML and DL models, have emerged as a robust solution 
to address the limitations of individual models. Techniques such as bagging, boosting, and stacking enhance 
prediction accuracy by leveraging the strengths of diverse algorithms and mitigating errors. Recent 
advancements, including hybrid  
 
models like CNN-LSTMs and attention-based frameworks, demonstrate significant improvements in 
forecasting complex urban traffic conditions. 
This study thoroughly explores the application of AI-driven traffic prediction methodologies, emphasizing 
the potential of ensemble learning in overcoming challenges like data sparsity, scalability, and real-time 
demands. The outcomes of this exploration extend beyond traffic prediction to encompass critical areas of 
congestion management, pollution control, and road utilization. The integration of AI enables accident 
detection, dynamic routing, and public transport planning, contributing to safer and more efficient urban 
mobility systems. 
By leveraging AI for smart city integration, this research also highlights its application in emergency services 
and weather impact analysis, ensuring robust responses to environmental and operational challenges. 
Reviewing state-of-the-art models and their integration into Intelligent Transportation Systems (ITS), this 
study provides a framework for sustainable urban mobility. The findings aim to guide researchers and 
practitioners in developing reliable, efficient, and scalable traffic management solutions, advancing smart city 
initiatives by enhancing transportation efficiency and reducing congestion. 
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Introduction 

 
Fig. 1. Flow chart of the work done in this paper 
Keywords: AI Traffic Prediction, Ensemble Learning, Sustainable Urban Mobility, Intelligent 
Transportation Systems (ITS), Smart City Traffic Management,  Hybrid AI Models for Urban Transport, 
Real-Time Traffic Analytics 
Urbanisation and the growing density of city populations have brought unprecedented challenges to 
transportation systems worldwide. Currently, 55% of the global population lives in cities, and by 2050, this 
figure is expected to increase by another 13% [1]. This trend not only amplifies traffic congestion but also 
escalates associated issues such as increased environmental pollution, a higher incidence of traffic accidents, 
and extended travel times [2, 3]. For instance, traffic congestion is estimated to cost the U.S. economy around 
$120 billion annually, underscoring the urgent need for effective traffic management solutions [4]. Traffic 
prediction has become a central focus of Intelligent Transportation Systems (ITS), as accurate forecasting of 
traffic flows can alleviate congestion, reduce vehicle emissions, and can help traffic stakeholders as shown in 
the following table, ultimately contributing to safer, more efficient, and sustainable urban environments [5]. 

The following table displays the various Traffic Stakeholder: 
 

Category Description 

Decision 
Authorities 

 
Responsible for designing and implementing traffic-related regulations and laws. 

Commercial 
Entities 

 
Organisations impacted by traffic flow, including delivery and logistics firms. 

Data Providers  
Agencies offering traffic data analytics and real-time updates. 

Public 
Authorities 

 
Entities overseeing infrastructure development and urban mobility strategies. 
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Flow 
Supervisors 

 
Professionals monitoring and controlling traffic flow in real-time. 

City Developers  
Experts strategizing sustainable urban layouts and road usage patterns. 

Commuters  
Individuals using roadways, including drivers, cyclists, and pedestrians. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2: Benefits of traffic flow prediction 
 

The development of Intelligent Transportation Systems (ITS) leverages advanced technologies, including 
communication, computation, and control, to enhance urban mobility and address traffic issues [6]. Central 
to ITS is the Internet of Things (IoT), which uses interconnected sensors and devices to collect real-time data 
on vehicle flow and speed, providing crucial insights for predictive models [7–9]. However, the spatial and 
temporal complexities of traffic data demand advanced models to handle dynamic, non-linear patterns 
effectively [10]. 

Traditional models like ARIMA have been used for short-term traffic forecasting but fall short in managing 
non-linear and stochastic traffic characteristics [11, 12]. This limitation has driven the adoption of Artificial 
Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques, which excel in capturing 
intricate spatio-temporal dependencies [13]. Techniques such as CNNs, RNNs, and LSTMs process large 
datasets for accurate predictions [14, 15], while newer models like T-GCRNN improve adaptability by 
utilizing graph structures for spatial and time-series data [16]. GRUs and attention-based models further 
enhance predictions by analyzing dynamic traffic patterns with spatio-temporal data from IoT devices [17, 
18]. 

Emerging methods like Graph Convolutional Networks (GCNs) and Spatio-Temporal Graph Convolutional 
Networks (STGCNs) demonstrate significant advancements in modeling complex spatial relationships and 
support informed decisions for sustainable urban development [19]. This review evaluates AI, ML, and DL 
methodologies, emphasizing their strengths, limitations, and contributions to advancing smart cities through 
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enhanced traffic prediction and management. 

Background Study on Traffic Prediction As urban areas grow, traffic congestion has emerged as a 
significant challenge, impacting public health, environmental quality, and economic productivity. Intelligent 
Transportation Systems (ITS) have been developed to address these challenges by leveraging the Internet of 
Things (IoT) and data analytics for real-time traffic flow management. The goal of ITS is to establish 

interconnected, data-driven traffic systems capable of minimising 
congestion and improving urban mobility through precise traffic 

predictions (20). In recent years, artificial intelligence (AI) and its 
subfields—machine learning (ML) and deep learning (DL) as shown 
in Fig. 3 —have become central to these efforts, providing 
innovative approaches to forecast traffic conditions accurately.   
Fig.-3: AI and it’s subfieldTraditional Approaches in 
Traffic PredictionHistorically, traffic prediction relied on 
parametric models like the Auto-Regressive Integrated 
Moving Average (ARIMA) and Kalman filters, which analyse 
time-series data to predict short-term traffic flow. While these 
models are effective in capturing linear trends, their predictive 
accuracy can suffer with nonlinear and dynamic traffic 
patterns common in urban areas (21). Researchers have also 

explored hybrid approaches that combine traditional statistical 
techniques with ML to capture complex dependencies in traffic 

data. For instance, combining ARIMA with a Nonlinear Wavelet Neural Network has shown 
enhanced prediction accuracy under fluctuating traffic conditions (Machine Learning 
Techniques for Traffic Prediction 

Learning Type Algorithm 
Subtype 

Examples 

Supervised Learning Classification Decision Trees, Support Vector Machines 

 Regression Linear Regression, Polynomial Regression 

 Ensemble Learning Bagging, Boosting 

Unsupervised 
Learning 

Clustering K-Means, Gaussian Mixture Model (GMM) 

 Association Apriori, Eclat 

 Dimensionality 
Reduction 

PCA (Principal Component Analysis), t-SNE 
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 ML techniques have proven highly effective in 
predicting traffic flow by identifying patterns in complex, nonlinear datasets. Common ML algorithms in 
traffic forecasting include Support Vector Machines (SVM), K-Nearest Neighbour (KNN), and Decision 
Trees (DT), each offering unique advantages based on data characteristics (23). SVM, for example, is valued 
for its capacity to manage high-dimensional data, making it ideal for traffic datasets with numerous features 
(24). KNN, a non-parametric method, is particularly effective when data lacks clear patterns or predefined 
clusters, making it useful for real-time traffic data with unpredictable variations (25). However, both methods 

Semi-Supervised 
Learning 

Generative Models Generative Adversarial Networks (GANs), Variational 
Autoencoders (VAEs) 

 Graph-based Graph Convolution Networks (GCNs) 

 Self-training Self-Learning Algorithms 

Reinforcement 
Learning 

- Q-Learning, Deep Q-Networks (DQN) 

Multi-instance 
Learning 

- Bagging, Boosting 

Inductive Learning Deductive 
Learning 

Neural Networks, SVMs 

 Inductive Learning Decision Trees, Covering Algorithms 

 

Transfer Learning - Fine-tuning Pre-trained Models 

Active Learning - Query-by-Committee, Uncertainty Sampling 

Online Learning - Incremental Learning Algorithms 

Multi-task Learning - Neural Networks for Joint Tasks 

Ensemble Learning Bagging Random Forest, Bagging 

 Boosting AdaBoost, Gradient Boosting 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

 

 
 

 
 

 

230 

encounter challenges when processing large datasets, as their performance can decrease with high-
dimensional data and complex patterns. 
Another widely used approach in ML for traffic prediction is the Random Forest (RF) algorithm, an ensemble 
method that combines multiple decision trees. RF has demonstrated robust accuracy and adaptability across 
various traffic datasets by minimising overfitting risks associated with individual decision trees, in addition, 
ML algorithms might be further subdivided into several sub-groups depending on distinct learning 
approaches, as shown in above table [26]. While ML techniques effectively address the challenges of 
nonlinear relationships, they often require significant computational resources, especially with large datasets 

collected from IoT sensors and real-time feedDeep Learning in Traffic Prediction 

The emergence of DL, particularly models like Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), and Long Short-Term Memory (LSTM) networks, has revolutionised traffic prediction by 
allowing systems to automatically learn and extract high-dimensional features from raw traffic data (27). 
CNNs excel at capturing spatial dependencies within traffic data, making them suitable for scenarios where 
geographical data impacts traffic flow (28). For instance, CNN-based models have been used to analyse traffic 
congestion patterns by processing data from adjacent road networks, effectively forecasting short-term flow 
variations across urban areas (29). 

RNNs, including LSTMs, are designed for sequential data and have been widely adopted in time-series traffic 
prediction due to their capacity to model temporal dependencies (30). LSTMs, with their gated memory cells, 
overcome the issue of vanishing gradients in traditional RNNs, thus preserving long-term dependencies in 
traffic data. This ability makes LSTMs particularly useful for capturing day-to-day patterns and seasonal 
traffic fluctuations. However, despite their accuracy, LSTMs require significant computational power and 

long training times, which can be limiting for real-time applications (31)Hybrid Models and 
Emerging Techniques 
Hybrid models, which integrate multiple ML and DL techniques, have gained traction as they capitalise on 
the strengths of each approach. For example, combining CNNs with LSTMs allows a model to capture both 
spatial and temporal dependencies in traffic data, thereby enhancing prediction accuracy for complex urban 
traffic patterns (32). Additionally, recent studies have explored Graph Convolutional Networks (GCNs) for 
traffic forecasting, as these networks model the road network as a graph, capturing intricate spatial 
relationships that traditional models may overlook (33). 

Another emerging approach involves attention-based models, which dynamically focus on relevant parts of 
the data to enhance prediction accuracy. Attention mechanisms have been successfully integrated with CNN 
and LSTM frameworks to improve predictive performance in urban traffic environments by prioritising 
critical sections of the traffic flow (34). 

Importance of Traffic Flow Prediction in Smart Cities 

Aspect Description Refer
ences 

Accident Occurrence 
Detection 

Traffic flow prediction identifies high-risk congestion patterns, enabling real-
time adaptive controls like dynamic speed limits to reduce collision risks. 

【74】
【75】 

Pollution Control Predictive traffic management lowers CO2 and NOx emissions by minimising 
idle times and optimising routes, contributing to sustainable urban environments. 

【76】
【77】 
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Aspect Description Refer
ences 

Road Utilisation Traffic prediction distributes vehicular loads across networks, preventing 
overuse of specific routes, reducing wear and tear, and extending infrastructure 
life. 

【78】
【79】 

Time Management Real-time predictions optimise travel times for commuters and enhance public 
transport scheduling, ensuring punctuality and reduced delays. 

【80】
【81】 

ML Techniques for Traffic Flow Prediction 
Problem ML Techniques Used Details References 

Accident 
Detection 

Classification Algorithms Support Vector Machines (SVM) and Decision Trees 
(DT) identify high-risk areas and accident patterns. 

[82][83] 

Pollution 
Control 

Regression and Prediction 
Models 

Linear regression models predict pollution levels 
based on vehicle density and optimise traffic flow to 
reduce emissions. 

[84][85] 

Road 
Utilisation 

Reinforcement Learning Reinforcement learning models balance road traffic 
distribution to prevent overutilization and reduce 
congestion on specific routes. 

[86][87] 

Time 
Management 

Real-Time Prediction Models Random Forest and k-Nearest Neighbour (k-NN) 
models optimise travel routes, ensuring reduced travel 
time for commuters and improved public transport 
schedules. 

[88][89] 

An ML model utilizing regression techniques and libraries like Pandas, Numpy, TensorFlow, and Scikit-learn 
predicted traffic data based on historical patterns, focusing on one-hour intervals using Kaggle datasets (2015–
2017). While achieving accurate results, further research into deep learning and big data was recommended 
[35]. Q-learning, a reinforcement learning algorithm, optimized traffic light management in SUMO 
simulations by dynamically adjusting signals, showcasing its potential to address urban traffic challenges 
[36]. 

ML and DL methods, including Random Forest, Linear Regression, Stochastic Gradient Regression, 
Multilayer Perceptron Neural Networks, and RNNs, were applied for adaptive traffic light control, but DL 
methods outperformed ML models [37]. For lane change prediction, SVM achieved the highest accuracy 
using high-fidelity data from Peach Street, Atlanta, among four evaluated ML models [38]. A type-2 fuzzy 
logic system, leveraging backpropagation for coefficient updates, outperformed SVM and other fuzzy 
methods in short-term traffic prediction accuracy [39]. 

The Canonical Polygonal Tensor (CPT)-based approach reduced data requirements by decomposing historical 
traffic data and demonstrated superior accuracy compared to rolling average algorithms on the M62 motorway 
in England [40]. An intelligent monitoring system (ML-ITMS) combining SVM and RF achieved 98.6% 
prediction accuracy, optimized for LoRa networks [41]. GSA-ELM was employed for short-term traffic 
forecasting on Amsterdam motorways, achieving MAPEs below 12% [42]. 

ML methods were applied in Serbia using automatic traffic counters to predict traffic volumes effectively 
[43]. Gaussian Process Regression reconstructed traffic flows from travel times, though accuracy depended 
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on high-quality input data [44]. In Tangier, Morocco, a hybrid ELM and ensemble model predicted hourly 
traffic while highlighting the importance of weather and road characteristics [45]. 

Various ML models like Naïve Bayes, Decision Trees, and SVM were tested in Bandung, Indonesia, revealing 
challenges like limited training datasets [46]. RF, SVR, Multilayer Perceptron, and Multiple Linear 
Regression were moderately successful in predicting urban traffic speed in Thessaloniki, Greece, with real-
time accuracy limitations [47]. PCA and linear discrimination analyzed South African road accident data, 
yielding promising results with Naïve Bayes, Logistic Regression, and K-NN classifiers [48]. Finally, an 
ensemble-based regression framework converted traffic volume prediction into binary classification, 
effectively handling concept drift but struggling with spatial dependencies [49].DL Techniques for 
Traffic Flow Prediction 

A traffic prediction system using four Deep Learning (DL) approaches—Deep Autoencoder (DAN), Deep 
Belief Network (DBN), Random Forest (RF), and Long Short-Term Memory (LSTM)—estimated traffic flow 
in densely populated areas, focusing on parameters like zone type and weather, though dataset details were 
unspecified [50]. Neural networks predicted trip durations using K-Means clustering and Waze Live Map API 
data, with suggestions to include weather factors for better accuracy [51]. A Recurrent Mixture Density 
Network (MDN) combined RNN and density techniques for short-term prediction in Shenzhen, China, but 
dataset limitations hindered broader applications [52]. 

Challenge Deep Learning 
Technique 

Implementation Details References 

Accident 
Detection 

CNN-based 
frameworks 

Processes traffic surveillance data to identify accidents based on 
patterns of abrupt vehicle behaviour changes and collision 
signals. 

【90】 

【91】 

 Edge-based 
YOLOv8 

Leverages edge computing to perform localised accident 
detection for rapid response in dense urban areas. 

【92】 

【93】 

Pollution 
Control 

Spatiotemporal 
LSTMs 

Predicts and mitigates emissions hotspots by analysing 
spatiotemporal traffic data combined with vehicle pollution 
contributions. 

【94】 

【95】 

 Reinforcement 
Learning Models 

Optimises vehicle movement at traffic lights to minimise 
emissions caused by frequent stops and starts. 

【96】 

【97】 

Road 
Utilisation 

Transformer-based 
Traffic Models 

Enhances road usage predictions by modelling congestion 
dynamics and redistributing traffic more evenly. 

【98】 

【99】 

 Deep Graph 
Networks 

Evaluates underutilised roads and redistributes traffic based on 
graph-based urban road topology analysis. 

【100】 

【101】 

Time 
Management 

Multi-task Learning 
Models 

Integrates spatiotemporal inputs to optimise commuter travel 
time and public transport scheduling simultaneously. 

【102】 

【103】 

 Convolutional 
LSTMs 

Predicts real-time traffic flow and dynamically adjusts 
transportation operations to reduce delays. 

【104】 

【105】 
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An enhanced DBN improved traffic forecasting under adverse weather conditions by integrating highway and 
local monitoring data with Support Vector Regression (SVR) [53]. Urban traffic signals were optimized by 
integrating flow prediction and scheduling using real-world data from the Aliyun Tianchi platform [54]. The 
Traffic Congestion Index (TCI) model assessed congestion via SG-CNN, highlighting the need for external 
factors like weather for improved predictions [55]. Queue length prediction using LSTM neural networks and 
adaptive systems like InSync reduced overfitting through Sequential Model-Based Optimization (SMBO) 
[56]. 

The Attention-Based Multi-Task Learning (AST-MTL) model combined Fully Connected Neural Networks 
(FNN), Graph Convolutional Networks (GCNs), and Gated Recurrent Units (GRUs) for multi-horizon traffic 
predictions but required task-specific refinements [57]. The Feature-Injected RNN (FI-RNN) integrated 
temporal and contextual data for short-term forecasts, enhanced by sparse autoencoders, but suggested further 
feature extraction exploration [58]. Graph Convolution Networks analyzed spatial patterns for situational 
awareness, leveraging Caltrans PeMS data [59]. 

Hybrid models like LSTM-Graph-CNN effectively predicted congestion in the San Francisco Bay Area [60]. 
The Improved Bayesian Combination Model (IBCM-DL) addressed errors by integrating weather and 
accidents using Beijing highway data [61]. Recursive algorithms outperformed convolutional methods in 
traffic prediction using Floating Car Data, though data coverage was limited [62]. Deep ANN and CNN 
models forecasted traffic speeds under work zone conditions, emphasizing automation and data resolution for 
improvement [63]. 

CNN-LSTM hybrids analyzed spatial-temporal traffic patterns, suggesting additional data sources for 
scalability [64]. LSTMs corrected missing information for traffic jam predictions but needed optimization for 
low-speed areas [65]. The Deep and Embedded Learning Approach (DELA) faced challenges in explanatory 
power and embedded learning capabilities [66]. Integration of Big Data, DL, and in-memory computing 
enabled large-scale real-time forecasting with limitations in accuracy and dataset size [67]. Fuzzy CNN (F-
CNN) enhanced flow prediction using uncertain accident information [68]. A GRU-based spatiotemporal 
model forecasted short-term traffic while excluding external factors like weather, limiting its scope [69]. 
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Ensemble Learning In Traffic Prediction 

Technique Description Advantages Common Applications 
in Traffic Prediction 

References 

Bagging 
(Bootstrap 

Aggregating) 

Combines predictions from 
multiple models trained on 
bootstrapped datasets. 

Reduces variance; 
handles overfitting 
well. 

Short-term traffic flow 
prediction; travel time 
estimation. 

[106] 

Boosting Sequentially trains models, 
giving more focus to 
misclassified instances. 

Improves prediction 
accuracy; reduces 
bias. 

Traffic congestion prediction; 
flow density analysis. 

[107] 

Random 
Forest 

An ensemble of decision 
trees built using bagging and 
random feature selection. 

High robustness to 
noise and overfitting. 

Traffic speed estimation; traffic 
signal optimization. 

[108] 

Gradient 
Boosting 

Combines weak models 
(e.g., decision trees) in a 
sequential manner using 
gradient descent. 

Handles non-linear 
patterns effectively. 

Traffic volume forecasting; 
anomaly detection in traffic 
patterns. 

[109] 

AdaBoost Adjusts weights of 
misclassified samples 
iteratively to improve 
accuracy. 

Simplicity; good for 
weak learners. 

Predicting vehicle counts; road 
congestion alerts. 

[110] 

XGBoost Optimized version of 
Gradient Boosting designed 
for speed and performance. 

Fast computation; 
scalable to large 
datasets. 

Real-time traffic monitoring; 
route optimization. 

[111] 

LightGBM Gradient Boosting method 
optimized for large-scale 
data and lower memory 
usage. 

Efficient for high-
dimensional data. 

Traffic flow prediction in smart 
city systems. 

[112] 
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CatBoost Gradient Boosting method 
optimized for categorical 
features. 

Handles categorical 
data effectively. 

Prediction of traffic incidents 
based on categorical data. 

[113] 

Stacking Combines multiple models' 
predictions as inputs for a 
meta-model. 

Flexibility; leverages 
strengths of models. 

Multi-modal traffic analysis; 
hybrid prediction models. 

[114] 

Voting 
(Hard/Soft) 

Combines predictions from 
multiple models using 
majority (hard) or 
probabilities (soft). 

Simple 
implementation; 
stable results. 

Traffic state classification; 
travel time estimation. 

[115] 

Blending Similar to stacking but uses 
validation data for meta-
model training. 

Simpler than 
stacking; avoids data 
leakage. 

Combined short and long-term 
traffic flow prediction. 

[116] 

 

Fundamentals of 
Ensemble Learning 

Ensemble learning methods, 
which combine multiple 
individual models into a single 
predictive model, have gained 
significant attention in the field 
of traffic flow prediction due to 
their ability to leverage the 
strengths of diverse modelling 
approaches and improve 
overall prediction accuracy 
[70,129,130]. At the core of 
ensemble learning is the idea 
that by training multiple base 
models, each with its own 
unique strengths and 
weaknesses, and then 
combining their outputs, the 
resulting ensemble can make 
more accurate and robust 

predictions than any individual model could on 
its own. 

 

Fig-4: Ensemble Learning 
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Applications of Ensemble Learning in Traffic Prediction 
 

 

Fig. 5: Ensemble Learning in Traffic Flow Prediction 

Ensemble learning has been extensively applied to the task of traffic flow prediction, with researchers 
exploring various combinations of base models and ensemble techniques. Traditional ensemble methods, such 
as bagging, boosting, and stacking, have shown promising results in improving the accuracy of traffic flow 

prediction models.Ensemble techniques applied in traffic flow prediction:A joint 
temporal-spatial ensemble model for short-term traffic prediction was proposed, combining historical and 
real-time traffic data to capture both temporal and spatial dependencies in traffic patterns [71]. 

More recently, the integration of ensemble learning with deep neural networks has further advanced the 
state-of-the-art in traffic flow prediction, as these hybrid approaches can effectively capture complex non-
linear relationships in traffic data [70]. 
One approach, for example, involves using a hybrid LSTM-CNN network to model the heterogeneous 
interactions between different road agents, such as cars, buses, and pedestrians, and then combining the 
predictions from multiple such models to improve overall performance [72]. 
Another study presented a deep architecture for traffic flow prediction that learns deep hierarchical feature 
representations with spatio-temporal relations over the traffic network and then applies an ensemble learning 
strategy via random subspace learning to make the model more robust to incomplete data [73]. 
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COMPARISON TABLE SHOWCASING TRAFFIC PREDICTION ACCURACY USING MACHINE 
LEARNING (ML), DEEP LEARNING (DL), AND ENSEMBLE LEARNING METHODS, DERIVED 
FROM THE LATEST RESEARCH 

 

Method Technique 
Used 

Dataset 
Used 

Accuracy 
(%) 

Advantages Limitations References 

Machine 
Learning 
(ML) 

Random 
Forest (RF) 

PeMS ~76-82% Effective for 
simpler data; 
interpretable 
results. 

Struggles with 
non-linear 
temporal 
dependencies. 

【117】【118】 

 Gradient 
Boosting 
Machines 
(GBM) 

PeMS ~78-84% High precision 
for structured 
data. 

High 
computational 
complexity for 
large datasets. 

【119】【120】 

Deep 
Learning 
(DL) 

Long Short-
Term Memory 
(LSTM) 

METR-
LA 

~88-92% Captures 
temporal 
dependencies 
effectively; good 
for sequential 
data. 

Requires larger 
datasets and 
computational 
resources. 

【121】【122】 

 Graph Neural 
Networks 
(GNN) 

METR-
LA 

~89-93% Captures spatial 
dependencies 
across networks, 
outperforming 
other methods. 

Challenging to 
train and 
requires 
extensive 
feature 
engineering. 

【123】【124】 

Ensemble 
Learning 

Stacked LSTM 
and XGBoost 

PeMS ~91-94% Combines ML 
and DL strengths 
for improved 
accuracy and 
robustness. 

Increased 
complexity and 
training time. 

【125】【126】 

 Voting-based 
Ensemble 

METR-
LA 

~90-93% Aggregates 
multiple models 
to reduce 
variance and 
bias. 

Performance 
highly depends 
on base models 
used in the 
ensemble. 

【127】【128】 
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Exploring AI for Effective Traffic Prediction and Mitigating Urban Traffic Challenges 
for Future Research: 
 

Focus Area AI Techniques Opportunities for 
Future Research 

Benefits 

Traffic Prediction Neural Networks (e.g., 
LSTM, GNNs), 
Ensemble Models 

Develop hybrid models for 
increased prediction 
accuracy. 

Enhanced road safety, reduced 
congestion, and efficient traffic 
flow. 

Congestion 
Management 

Reinforcement Learning, 
Deep Q-Networks 

Integrate multi-agent 
systems for adaptive traffic 
light control. 

Minimises delays and optimises 
urban traffic networks. 

Pollution Control Decision Trees, Gradient 
Boosting 

Utilise AI to predict 
pollution hotspots and 
propose eco-routing 
solutions. 

Improved air quality and reduced 
environmental impact of traffic 
emissions. 

Road Utilisation Spatiotemporal Models, 
K-Means Clustering 

Leverage geospatial AI for 
optimal road usage planning. 

Prevents overuse of infrastructure 
and extends road longevity. 

Accident Detection Computer Vision 
(CNNs), Bayesian 
Networks 

Develop real-time accident 
prediction and reporting 
systems. 

Promotes quicker response times 
and enhanced road safety. 

Smart City 
Integration 

IoT + AI Models Combine IoT sensor data 
with predictive models for 
real-time optimization. 

Facilitates seamless smart city 
operations and enhanced urban 
planning. 

Dynamic Routing Ensemble Learning 
(Bagging, Boosting) 

Introduce context-aware AI 
models for route adjustments 
during peak hours. 

Reduces travel time and fuel 
consumption for commuters. 

Public Transport 
Planning 

Predictive Analytics, 
ARIMA Models 

Create AI systems to 
optimise bus and train 
schedules dynamically. 

Improves reliability and user 
satisfaction with public transport 
systems. 

Emergency Services Support Vector 
Machines, RNNs 

Enhance routing for 
ambulances and fire trucks 
using predictive modelling. 

Faster emergency response times 
and reduced fatality rates. 

Weather Impact 
Analysis 

Deep Learning 
Ensembles 

Integrate weather prediction 
with traffic forecasting for 
better resilience. 

Mitigates risks of weather-induced 
disruptions and accidents. 
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Conclusion:This comprehensive survey underscores the transformative role of Artificial 
Intelligence (AI) in addressing the multifaceted challenges of urban traffic management. By delving 
into traditional, machine learning (ML), deep learning (DL), and ensemble learning methodologies, 
it highlights their strengths, limitations, and practical implications. 
Key issues explored include the inadequacy of traditional methods like ARIMA in managing the non-linear 
and dynamic nature of urban traffic. Advanced ML and DL models, such as Long Short-Term Memory 
(LSTM) networks, Graph Neural Networks (GNNs), and hybrid CNN-LSTM frameworks, offer significant 
improvements in predicting complex spatial-temporal traffic patterns. Moreover, ensemble methods like 
Bagging, Boosting, and Stacking demonstrate their efficacy in combining the predictive strengths of 
individual models, achieving enhanced accuracy and robustness. 
The paper also addresses critical urban traffic challenges such as accident detection, pollution control, 
efficient road utilization, and time management. AI-driven solutions like CNN-based accident detection 
frameworks, spatiotemporal models for emission prediction, and reinforcement learning for adaptive traffic 
signal control are highlighted as pivotal innovations for smart cities. 
However, significant challenges persist, including computational demands of DL models, scalability issues 
in ML, and the complexity of ensemble methods. Future research directions include integrating IoT with 
ensemble models for real-time adaptability, developing hybrid ML-DL approaches to refine scheduling and 
travel-time predictions, and employing GNNs for comprehensive urban traffic network optimization. 
In conclusion, this work not only advances the state-of-the-art in traffic prediction but also lays a foundation 
for future innovations in sustainable urban mobility. It serves as a vital resource for researchers and 
practitioners, aiming to create smarter, more efficient, and resilient urban transportation systems. By 
embracing AI, cities can move closer to achieving their smart city visions, ensuring enhanced mobility and 
quality of life for their inhabitants. 
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