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Abstract. The objective of this paper is to develop picture fuzzy aggregation 
operators by utilizing the concept of power aggregation operators through 
Schweizer-Sklar operations. The Schweizer-Sklar t-norm and t-conorm enhance the 
flexibility of the data integration process, as well as the power aggregation operator, 
by capturing the interrelationships between various criteria during decision making. 
Motivated by Schweizer-Sklar t-norm and t-conorm, this paper aims to develop the 
theory of the picture fuzzy Schweizer-Sklar power weighted geometric operator and 
the picture fuzzy Schweizer-Sklar power ordered weighted geometric operator. The 
paper also explores the properties and characteristics of these proposed operators. 
Criteria weights play a crucial role in aggregating different criteria in multiple criteria 
decision making processes. This work adopts the simple multi attribute rating 
technique to compute criteria weights for solving Multi-criteria group decision-
making problems in a picture fuzzy environment. Finally, an illustrative example of 
road construction company is provided to demonstrate the applicability of the 
proposed operators. A comparison with existing operators validates the effectiveness 
of the proposed operators. 
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1 Introduction 
Multi-criteria group decision-making (MCGDM) is an important area of decision 
theory with widespread applica- tions across various fields. In many cases, decision-
makers encounter difficulties in reaching reasonable conclusions, as the process involves 
identifying multiple criteria and evaluating several alternatives. Moreover, in real-
world decision-making, the ambiguity and subjectivity inherent in human qualitative 
judgments often result in expert opinions that encompass a range of responses—such 
as yes, abstain, no, or refusal—which cannot be accurately represented by crisp 
values. In 1965, Zadeh (1965) introduced the foundational concept of fuzzy set (FS) 
theory, which incorporated the degree of membership µ. This concept has since been 
applied to numerous real-world problems. Later, in Atanassov (1986) expanded on 
FS theory by developing the intuitionistic fuzzy set (IFS) theory, which adds the 
degree of non-membership ν alongside the degree of membership µ under the 
condition that 0 ≤ µ + ν ≤ 1. 
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The IFS, while demonstrating strong capabilities in multi criteria decision-

making (MADM), cannot ade- quately express more complex fuzzy information. 
One limitation is its inability to capture ambiguous informa- tion, such as the degree 
of neutrality (η). To address this issue, Cuong et al. (2013), introduced the concept of 
the picture fuzzy set (PFS), which extends IFS by adding the degree of neutrality 
(η) alongside the degrees of membership (µ) and non-membership (ν), under the 
condition 0 ≤ µ + η + ν ≤ 1. PFS models are particularly useful in situations where 
human opinions involve more nuanced responses such as “yes,” “no,” “abstain,” and 
“refusal.” The figure 1 illustrates the extensions of a PFS. Additionally, a few 
students may express refusal to visit either destination (π). Cuong et al. (2016) 
investigated the classification of representable picture t-norms and picture t-conorms 
along with their properties. Yager (1988) introduced the ordered weighted 
aggregation (OWA) operator and explored its properties. Wei (2017) described 
various PF arithmetic and geometric operators, as well as PF hybrid aggregation 
operators (AOs) and their applications. Garg (2017) presented a series of AOs for 
PFSs that were applied to solve multi criteria decision-making (MCDM) problems. 
Wei (2018) studied the MADM problem using arithmetic and geometric AOs based 
on Hamacher operations in the PF context. Khan 

 
1 

 

 
Figure 1: Extensions of PFS 

 
 
 
 

et al. (2019) proposed AOs using PF Einstein operations and discussed their 
application in a PF-based MADM problem. Zhang et al. (2018) introduced PF 
Dombi Heronian mean operators for the MADM problem. Jana et al. (2019) 
developed PF Dombi arithmetic and geometric AOs to solve MADM problems. 
Additionally, Jana et al. (2019) employed PF Hamacher AOs to construct MADM 
approaches for enterprise performance evaluation within the PF context. Ates et al. 
(2020) proposed novel PF aggregation operators and extended the Bonferroni mean 
operator to MCDM applications. Wang et al. (2018) proposed PF Muirhead mean 
operators and demonstrated their application for financial investment risk evaluation. 
Qiyas et al. (2020) introduced several AOs using Yager operators in the PF context. 
Several other MADM approaches based on AOs for PFNs have been proposed, 
including those by Lin et al. (2021), Qin et al. (2021), Seikh et al. (2021), Ullah 
(2021), and Senapati (2022). 
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Table 1: Comparison of different approaches for picture fuzzy AOs 
 

 
 
Authors 

 
Geometric 
operator 

Status of 
criteria 
weight 

 
DM 
method 

 
DM 
solution 

 IF Schweizer-Sklar power    
Garg, et al. IF Schweizer-Sklar   Score 
(2023) weighted Known MADM function 

 IF Schweizer-Sklar 
generalized 

   

Khan et al. power weighted    
(2022) IF Schweizer-Sklar 

generalized 
  Score 

 power ordered weighted Known MAGD
M 

function 

Biswas, A & Deb, 
N. 

PyF Schweizer-Sklar   Score 

(2021) power weighted Known MADM function 
Wei, D et al.    Best-and 
(2022) FF Schweizer-Sklar 

weighted 
Unknown MAGD

M 
-worst 

 q-ROF Schweizer-Sklar 
power 

   

Ma et al. q-ROF Schweizer-Sklar   Score 
(2024) power weighted Known MADM function 

 PF Schweizer-Sklar 
prioritized 

   

Hussain et al PF Schweizer-Sklar 
prioritized 

  Score 

(2022) weighted Known MADM function 
 PF Schweizer-Sklar    
Proposed power weighted    
work PF Schweizer-Sklar   Score 

 power ordered weighted Unknown MAGD
M 

function 

 
Furthermore, various AO based on the Schweizer-Sklar (SS) operational law 

within different FS frameworks are summarized in Table 1. Harish Garg, et al. 
(2023) introduced the IFSS prioritized AO for solving MCDM problems. Khan et 
al. (2022) explored the concept of the IFSS generalized power AO. Biswas, A & 
Deb, N. (2021) developed the SS power AO in a pythagorean fuzzy (PyF) 
environment. Wei, D et al. (2022) established the fermatean fuzzy (FF) SS in 
green supplier selection. Ma et al.(2024) proposed the q-rung orthopair fuzzy (q-
ROF) SS prioritized operator for MADM problems. Hussain et al (2022) 
developed the PFSS prioritized op- erator for solving MADM problems. 
This article introduces a series of efficient AO by combining the power aggregation 
(PA) operator with SS op- erations to enhance the information aggregation process in 
the PF environment. A set of PF AO is proposed, including the PFSS power 
geometric (PFSSPG) operator, PFSS power weighted geometric PFSSPWG operator, 
and PFSS power ordered weighted geometric (PFSSPOWG) operator. The article 
also discusses special cases and desirable properties of these operators. A simple 
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multi criteria rating technique (SMART) is presented to solve MCGDM problems in 
the PF environment using the proposed operators. To demonstrate the practicality 
and effectiveness of the approach, an illustrative example, is solved and compared 
with several existing approaches. Additionally, Table 1 provides a summary of 
various AO based on the SS operational law. Our study aims to address this specific 
research gap. 

The main motivations of this article are as follows: 
  The previous research focuses on the development of AO, with particular 

emphasis on the importance of SS operations, which serve as a generalization of 
algebraic operations. 

  To combine decision information from multiple experts using an PG operator that 
accounts for the inter- relationships between criteria. 

  To develop an MCGDM method incorporating the proposed operators for 
efficiently managing conflicting criteria. 

  To showcase the practicality of the proposed operators through solving a numerical 
MCGDM application. 
  To validate the feasibility of the method by examining the parameters of the 

defined operators across different values and comparing them with existing 
operators. 

 

 
Figure 2: Contribution of the proposed work 

 
The main contributions of this article are as follows: 
  This article introduces innovative SS operation laws and PA operator, namely 

PFSSPG, PFSSPWG and PFSSPOWG operators under PF environment. 
  These operators are utilized to develop a novel PFMCGDM method with SMART. 
  The effectiveness and reliability of the proposed PFMCGDM method with 

SMART approach are demon- strated by applying it to solve a practical road 
construction companies. 

  Furthermore, the feasibility of the developed method is illustrated through a 
comparative evaluation against existing operators. 

  The contributions of this research are illustrated in Figure 2 to provide readers 
with a clear visual under- standing. 

This research work is organized into eight detailed sections as outlined below. Section 
2 introduces the fundamental concept of PFSs and their related operations. In Section 
3, the proposed picture fuzzy Schweizer- Sklar power geometric aggregation 
operators, along with their properties, are discussed. Section 4 continues this 
discussion by presenting the properties of these aggregation operators. Section 5 
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outlines an algorithm to solve MCGDM problems using the proposed operators. To 
illustrate the practical application of this approach, a numerical example in the picture 
fuzzy context is provided in Section 6. Section 7 offers a comparative analysis to 
demonstrate the advantages of the proposed method over existing aggregation operators. 
Finally, Section 8 presents the conclusions drawn from the study. 

 
 
2 Preliminaries 
In this section, some basic concepts have been reviewed related to PFS. 

 
2.1 Picture Fuzzy Set 
The PFS (Cuong et al. (2013, 2014)) is an extension of IFS. The mathematical 
form of PFS is expressed as follows: 
Definition 1. A picture fuzzy set A on universal set X is defined by, 

A = {⟨x, µA(x), ηA(x), νA(x)⟩ /x 
∈ X} 

 
Where, µA(x), ηA(x) and νA(x) ∈ [0, 1] are the degree of membership, the 

degree of neutral membership and the degree of non-membership of x ∈ A 
respectively, with the following condition: 0 ≤ µA(x) + ηA(x) + νA(x) ≤ 1 ∀x ∈ 
X. Then, for x ∈ X, πA(x) = 1 − µA(x) − ηA(x) − νA(x) could be called the 
degree of refusal membership of x in A. Geometrical representation of PFS is 
shown in Figure 1. For convenience, α = (µα, ηα, να) is called a picture fuzzy 
number (PFN). 

 
 

Figure 3: Geometrical representation of picture fuzzy set 
 
 
2.2 Comparison for PFNs 
According to Garg (2017) the score and accuracy functions of PFNs are as follows: 
Definition 2. Let α = (µα, ηα, να) be a PFN, its score function S(α) and its 
accuracy function A(α) is defined by S(α) = µα − ηα − να; S(α) ∈ [−1, 1], A(α) 
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r 

P G(b̆ , ̆ b , . . . , ̆ b ) = b̆ k=1 1+U¨ (bk ) 

¨ ˘k 
h k h k h k 

˘h k=1,k̸=h 

1 2 r k 

= µα + ηα + να; A(α) ∈ [0, 1]. 
Based on the S(α) and A(α) an order relationship between two PFNs is defined as 
follows. 

Definition 3. Let α1 = (µα1 , ηα1 , να1 ) and α2 = (µα2 , ηα2 , να2 ) be two 
PFNs. Then the following comparison rules can be used: 

(i) If S(α1) < S(α2) then α1 ≺ α2 
(ii) If S(α1) = S(α2) then 

(a) If A(α1) < A(α2) then α1 ≺ α2 
(b) If A(α1) = A(α2) then α1 ≈ α2. 

 
2.3 Operation laws of Picture fuzzy numbers 
Schweizer-Sklar (Hussain, A. et al. (2022)) operations laws and power geometric 
aggregation operator (Ullah, K. et all (2023)) are defined for PFNs as follows. 
Definition 4. The PG operator are defined as: 

(1+U  ̈(˘b )) 

Y Σr k ˘ 
 

 
where U (b ) 

= Σr 
¨   ̆  

sup(a  ̆ , a˘ ), sup(a˘ , a˘ ) = 1 − D(a˘ , a˘ ) and 
the weight Σ 

of the argument b 

depends on all the input arguments ˘bk(k = 1, 2, . . . , r), which enables the argument 
values to support each other in the geometric aggregation process. 
Definition 5. Let α1 = ⟨µα1 , ηα1 , να1 ⟩ and α2 = ⟨µα2 , ηα2 , να2 ⟩ be any 
two PFNs, then the Euclidean distance between them is defined as follows: 

D(α , α ) = 1 {|µ − µ  
| + |η 

— η  | 
+ |ν 

— ν  |} (2) 

 
 

1 2 3 α1

 α2 

α1
 
α2 

α1 α2 

k=1 

(1+U (b )) 

(1) 

r 

k 
 ̆

k=1 1+U  ̈(bk ) 
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1 2 1 2 1 2 

1 2 1 2 1 2 

1 2 

   

D E 

Definition 6.  Let α1 = ⟨µα1 , ηα1 , να1 ⟩ and α2 = ⟨µα2 , ηα2 , να2 ⟩ be any 
two PFN. Then the generalized union and intersection are defined as follows: 
α1 ∪ α2 = {⟨x, {T∗{µα (x), µα (x)}}, {T{ηα (x), ηα (x)}}, {T{να (x), να }(x)}|x 
∈ X⟩}; 

1 2 1 2 1 2 
α1 ∩ α2 = {⟨x, {T{µα (x), µα (x)}}, {T∗{ηα (x), ηα (x)}}, {T∗{να (x), να (x)}}|x ∈ 
X}⟩}; where T and T∗ re- 

1 2 1 2 1 2 
spectively, express TN and TCN. 
The SSTN and SSTCN are defined as follow. 

β β  1 
T(x1, x2) = (x1 + x2 − 1) β 

∗ β β  1 

T (x1, x2) = 1 − ((1 − x1 + (1 − x2 − 1) β 
Additionally, when β=0, we have T(x1, x2) = x1x2 and T∗(x1, x2) = x1 + x2 − 
x1x2. That is, SSTN and SSTCN reduce to algebraic TN and TCN. 
Definition 7. Let α1 = ⟨µα1 , ηα1 , να1 ⟩ and α2 = ⟨µα2 , ηα2 , να2 ⟩ be any two 
PFN. Then based on SS operations, the generalized union and intersection are 
introduced as follows: 

α1 ⊕ α2 = ⟨T∗(µα , µα ), T(ηα , ηα ), T(να , να )⟩ (3) 

α1 ⊗ α2 = ⟨T(µα , µα ), T∗(ηα , ηα ), T∗(να , να )⟩ (4) 
Definition 8. Let α = (µα, ηα, να) , α1 = (µα1 , ηα1 , να1 ) and α2 = (µα2 , ηα2 
, να2 ) be three PFNs and some basic algebraic operations of PFNs are defined 
as follow: 

 
α1 ⊕ α2 = ⟨µα1 + µα2 − µα1 

µα2 , ηα1 ηα2 , να1 να2 ⟩, α ⊗ α 

= µα1 µα2 , ηα1 + ηα2 − 

ηα1 ηα2 , , 
να1 + να2 − να1 να2 

λα =  1 − (1 − µα)λ, (ηα)λ, (να)λ  

, 

αλ = 
D

(µα)λ, 1 − (1 − ηα)λ, 1 − (1 − να)λ
E 

: λ > 0. 
 

Definition 9. Let α = (µα, ηα, να) , α1 = (µα1 , ηα1 , να1 ) and α2 = (µα2 , ηα2 
, να2 ) be three PFNs and some basic SS operations of PFNs are defined as 
follows (β < 0): 

 
β β  
1 

 1  1 

α1 ⊕ α2 = ⟨(1 − µα1 ) + (1 − µα2 ) − 1) β , (ηαβ + ηαβ − 1) β , (ναβ + 

ναβ − 1) β )⟩, 
 1
 
β 

1 2 1
 2 
β  1 β 

β  1 

α1 ⊗ α2 = ⟨(µαβ + µαβ − 1) β , 1 − ((1 − ηα1 )  + (1 − ηα2 )  − 1) β , 1 − ((1 − 
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α 

= 

j=1 

j=1 

j=1 wj = 1. Σ 

να1 )  + (1 − να2 )  − 1) β ⟩, 
1 2 

λ  
1 

λ  
1 

λ  1 

α1 = ⟨(λµ β − (λ − 1)) β , 1 
− (λ(1 − ηα1 ) 

1 

— (λ − 1)) β , 1 − (λ(1 − να1 ) − (λ − 1)) β ⟩, λ > 
0, 

λ  1  1  1 

λα1 = ⟨1 − (λ(1 − µα1 )  − (λ − 1)) β , (ληαβ − (λ − 1)) β , (λναβ − (λ − 1)) 
β ⟩, λ > 0. 

1 1 
3 Picture fuzzy Schweizer-Sklar power geometric aggregation 

operators 
In this section, we presented the Schweizer-Sklar power geometric AOs and discussed 
the fundamental properties of these proposed operators within the framework of 
PFNs. 

 
3.1 Picture fuzzy Schweizer-Sklar power weighted geometric aggregation 

op- erators 
In the next section, we introduce the confidence picture fuzzy Schweizer-Sklar power 
weighted geometric operator within the context of PF, and we examine the desirable 
properties of this proposed operator. Additionally, we 
applied a weighted suppport degree throughout our article, using the following equation: χ˘j 
(j = 1, 2, . . . , n) is a 
set of integrated 
weights, χ˘ 

wj 
(1+Ny(
αj )) 

Σ 

. Ny(α ) = 
Σn 

Sup(α , α ) and w = (w , 
w , . . . , w 

)T is 

j n 
j=1 

wj(1+Ny(α
j ))
 
j 

n 

h=1,h̸=j
 j
 h 

1 2 n 

 
Definition 10. Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of PFN. Then 
the PFSSPWG operator of dimension n is a mapping PFSSPWG: αn → α such that 

 
 
 
 

( Σ wj (1+Ny(αj )) ) 
PFSSPWG(α1, α2, . . . , 

αn) = ⊕n  α 

n 
j
=
1 

wj 
(1+N
y(αj )) 

(5) 

where α is the set of all PFN and Ny(αj) = Σn Sup(αj, αh) and w = (w1, w2, . . . , wn)T 
is the weight vector 

of αj (j = 1, 2, . . . , n)w ∈ [0, 1], Σn wj = 1. 
h=1,h ̸=j 

the weight vector of αj (j = 1, 2, . . . , n)w ∈ [0, 1], 

j 
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n n n 

Σ 

j=1 j=1 

1 2 

χ˘j µj ) β , 1 − ( 

χ˘j (1 − ηj ) ) β , 1 − ( 

χ j̆ (1 − νj ) ) β ⟩ 

j j 

χ˘j + 1) β , ( j j χ˘j + 1) β , ( j j χ j̆ + 1) β ⟩ 

χ˘2 + 1) β 2 − (χ̆2(1 − η2) 

— χ˘2 + 1) β , 1 − (χ̆2 (1 − ν2) — χ˘2 + 1) β ⟩ =⟨( j=1 χ j̆ µj − j=1 χ˘j + 1) β , 1 − 

j=1 
is right. 

j j j=1 χ˘j + 1) β , 1 − ( j=1 j j j=1 χ˘j + 1) β ⟩ i.e. when n=2, Equation 7 

1) β , ( j=1 χ j̆ ηj − j=1 χ˘j + 1) β , ( j=1 χ˘j νj − j=1 χ˘j + 1) β ⟩ then when n=m+1, according to the op- 
β β 

j=1 

j=1 j=1 

j=1 j=1 j=1 j=1 

Theorem 1. Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of PFN and β 
< 0, then the aggregated value obtained using PFSSPWG operator is also a 
PFN and can be expressed as follows: 

 
PFSSPWG(α , α 
, . . . , α 

) = 

⟨(
Σ 

 

β  1
 
Σ 

 

β  1
 
Σ 

 

 
β  1 

 
(6) 

 
 1+Ny(αj )  

where χ˘j (j = 1, 2, . . . , n) is a set of integrated 
weights, χ˘j = n 

j=1 

(1+Ny(αj )) . 

In order to prove Equation 6, we first prove that when χ˘ = (χ̆1 , χ̆ 2 , . . . , χ̆n)T is 
any value, i.e. without any con- straint for χ˘, the following equation is right: 
PFSSPWG(α1, α2, . . . , αn) = 

 
n n n n n n 

⟨1 − (
Σ 

χ˘ (1 − µ 

)β − 
Σ 

 

 1 Σ 
χ˘ ηβ 

− 
Σ 

 

 1 Σ 
χ˘ νβ − 

Σ

  
1 

 
  

(7) 

By the mathematical induction method, the Equation 7 can be proved as follows: 
Proof. According to the operational rules of PFs based on SS operations, we have 

β  
1 

β  
1 

β  1 

χ˘j αj = ⟨(χ˘j µj − χ˘j + 1) β 1 − (χ˘j (1 − ηj ) − χ˘j + 1) β , 1 − (χ˘j (1 − νj ) − χ˘j 
+ 1) β ⟩ 

β  1 β  
1 

β  1 

1. When n=2, we have χ̆ 1α1 = ⟨(χ̆1µ1 − χ˘1 + 1) β 1 − (χ̆1(1 − η1) − χ˘1 + 1) β , 1 − 
(χ̆1(1 − ν1) − χ˘1 + 1) β ⟩; 

β  1 β  
1 

β  1 

χ̆ 2α2 = ⟨(χ̆2µ2 − χ̆ 2 +1) β 2−(χ̆2(1−η2) − χ̆ 2 +1) β , 1−(χ̆2(1−ν2) − χ̆ 2 +1) β ⟩ 
then PFSSPWG(α1, α2) = 

β  1 β  
1 

β  1 β 

χ̆1α1 + χ̆2α2 = ⟨(χ̆1µ1 − χ˘1 + 1) β 1 − (χ̆1(1 − η1) − χ˘1 + 1) β , 1 − (χ̆1(1 
− ν1) − χ˘1 + 1) β + (χ̆2µ2 − 

 1 β  
1 

β  1
 Σ2 

β Σ2  1 

(Σ2 χ˘ (1 − η )β − Σ2 1 Σ2 χ˘ (1 − ν )β − Σ2 1 

2. Suppose n=m, Equation 7 is right, i.e. PFSSPWG(α1, α2, . . . , αm) = ⟨1 −(Σm 

χ˘j (1 − µj )β −Σm  χ˘j + 
 1  
Σm 

β
 Σ

m  1  Σm 

j=1 j=1 

n 

1 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 19 No. 01 (2025) 

  

202 
 

j=1 

j=1 χ j̆ + 1) β + (χ̆m+1µm+1 − χ˘m+1 + 1) β , 1 − (χ̆m+1(1 − ηm+1) — χ˘m+1 + 1) β , 1 − (χ̆m+1 (1 − νm+1) 
— 

j j=1 

j=1 χ˘j (1 − µj ) ) β , ( 

j=1 χ j̆ ηj ) β , ( j=1 χ˘j νj ) β ⟩ = ⟨0.253, 0.262, 0.04⟩. 

β Σm  1  
erational rules of PFNs, we have χ̆m+1αm+1 = ⟨(χ̆m+1µm+1 − χ˘m+1 + 1) β , 1 
−(χ̆m+1(1 − ηm+1) − χ˘m+1 + 

 1 β  1 
1) β , 1−(χ̆m+1(1−νm+1) −χ̆m+1+1) β ⟩ and PFSSPWG(α1, α2, . . . , αm, 
αm+1) = PFSSPWG(α1, α2, . . . , αm)⊕ 

(χ˘ α ) = ⟨1 − 

(Σm 
χ˘ (1 − µ )β 

− Σm 
 1  
Σm 

χ  ̆ηβ − 
Σm 

 1  
Σm 

χ  ̆νβ − 

m+1 
Σm 

m+
1 

 1 

j=
1 
j β 

j j=1 χ˘j 
+ 1) β , ( 

 1 

j=1 
j j 
β 

j=1 χ˘j + 
1) β , ( 
 1 

j=1 
j
 
j
 
β 

χ˘ 1 Σm+1 χ˘ µβ 

−Σm+1 

1 Σm+1 χ˘ (1 − η 

)β −Σm+1 

1 Σm+1 χ˘ (1 − 

m+1 + 1) 
β ⟩ = ⟨( 

ν )β − 
Σm+1 

j=1
 j 
j 
 1 

j
=
1 

χ˘j + 1) β 
1 −( 

j=1
 j
 j 

j=1 χ˘j + 1) β , 
1 −( 

j=1 j 

3. According to steps (1) and (2), Equation 7 is established for any j. Because Equation 
7 is right without 

any constraint for χ˘, Equation 6 is also right when χ˘j ≥ 0 and Σn χ˘j = 1. 

 
 

Example 1. Suppose α1 = ⟨0.8, 0.1, 0.05⟩, α2 = ⟨0.52, 0.3, 0.1⟩, α3 = ⟨0.45, 0.4, 0.01⟩ 
and α4 = ⟨0.79, 0.156, 0.05⟩ 
are four PFNs, w = (w1, w2, w3, w4) = ⟨0.2, 0.1, 0.3, 0.4⟩T be the weight vector of 
αj (j = 1, 2, 3, 4) then we adopt the PFSSPWG to aggregate the four PFNs and 
generate a comprehensive value. The steps are shown as follows: (β = −2). 
Sup(α1, α2) = 0.823, Sup(α1, α3) = 0.77, Sup(α1, α4) = 0.978, Sup(α2, α3) = 
0.913, Sup(α2, α4) = 0.845 and Sup(α3, α4) = 0.792.Ny(α1) = Sup(α1, α2) + 
Sup(α3, α1) = 2.571, Ny(α2) = 2.582, Ny(α3) = 2.475 
and Ny(α4) = 2.615.χ˘1 = 0.201, χ˘2 = 0.101, χ˘3 = 0.293 and χ˘4 = 0.406. 
PFSSPWG(α1, α2, . . . , α4) = ⟨1 − 

(Σ

4 

β  1  
Σ4 

β  1  
Σ4 

β  1 

 
For a collection of PFN, we can easily prove the proposed PFSSPWG operator satisfying 

the idempotency, monotonicity and boundedness properties as follows: 
 
property 1. (Idempotency) Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of 
PFN, if αj = α = (µ, η, ν) then 
PFSSPWG(α1, α2, . . . , αn) = α 
property 2. 
(Monotonicity) Let α 

= ⟨µ  , η  
, ν 

⟩ and α′ = 

⟨µ′ 
 
′ ′ ′ 

, η  , ν 

χ˘j + 1) β ⟩ So, when n=m+1, Equation 7 is right. 
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jj=1 jj=1 jj=1 

jj=1 

jj=1 jj=1 

j 
′ ′ ′ 

αj  
αj  
αj 

j
 
αj 

αj  αj ⟩ αj(j = 1, 2, . . . , n) as two 
sets of 

PFN; and µj ≤ µj, ηj ≤ ηj and νj ≤ νj then 
 

′ ′ ′ 
PFSSPWG(α1, α2, . . . , αn) ≤ PFSSPWG(α1, α2, . . . , αn) 

property 3. (Boundedness) Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of 
PFN, and 
α+ = 
(maxµn 

, 
minη
n 

, 
minν
n 

), α− = 
(minµn 

, 
maxη
n 

, 
maxν

) then 
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j=1 

j=1 

n n n 

1 2 

χ˘j µj ) β , 1 − ( χ˘j (1 − ηj ) ) β , 1 − ( 

χ˘j (1 − νj ) ) β ⟩ 

1 2 4 j=1 χ˘j (1−µj ) ) β , ( 

j=1 χ j̆ ηj ) β , ( j=1 χ˘j νj ) β ⟩ = ⟨0.317, 0.310, 0.052⟩. 

j=1 

j=1 j=1 

α− ≤ PFSSPWG(α1, α2, . . . , αn) ≤ α+ 
3.2 Picture fuzzy Schweizer-Sklar power ordered weighted geometric 

aggre- gation operators 
In the following section, we propose the confidence picture fuzzy Schweizer-Sklar power 
ordered weighted geomet- ric operator with the PF context and the desirable properties 
of the proposed operator are investigated. 

 
Definition 11. Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of SVNN. Then 
the PFSSPOWG operator of dimension n is a mapping PFSSPOWG: αn → α such that 

 
 
 
 

  wj (1+Ny(ασ(j)))  
PFSSPOWG(α1, α2, . . . , 

αn) = ⊕n  α 

( 
Σn 

j
=
1 

σ(j
) 

wj 
(1+Ny(

ασ(j))) ) 

(8) 

where σ(j) is the permutation such that ασ(j−1) ≥ ασ(j) for any j = 1, 2, . . 

. n and Ny(ασ(j)) = Σn 
 
Sup(ασ(j), 
ασ(h)) 

and w = (w1, w2, . . . , wn)T is the weight vector of ασ(j)(j = 1, 2, . . . , n), w ∈ [0, 1], Σn
 wj = 1. 
Theorem 2. Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of PFN and β 
< 0, then the aggregated value obtained using PFSSPOWG operator is also a 
PFN and can be expressed as follows: 

 
PFSSPOWG(α , α 
, . . . , α 

) = 

⟨(
Σ 

 

β  1
 
Σ 

 

β  1
 
Σ 

 

 
β  1 

 
(9) 

Proof. Proof of this theorem is similar to theorem 1 so we omit here. 
 

Example 2. Suppose α1 = ⟨0.8, 0.1, 0.05⟩, α2 = ⟨0.79, 0.159, 0.05⟩, α3 = ⟨0.52, 0.23, 0.1⟩ 
and α4 = ⟨0.45, 0.4, 0.01⟩ 
are four PFNs, w = (w1, w2, w3, w4) = ⟨0.2, 0.1, 0.3, 0.4⟩T be the weight vector of 
αj (j = 1, 2, 3, 4) then we need to permute the PFs in order to aggregate then 
using Equation 9. we first calculate the score value of αj for j = 1, 2, 3, 4. 
Sup(α1, α2) = 1 − D(α1, α2) = 0.978, Sup(α1, α3) = 0.823, Sup(α1, α4) = 
0.77, Sup(α2, α3) = 0.845, Sup(α2, α4) = 0.792 and Sup(α3, α4) = 
0.913.Ny(α1) = Sup(α1, α2) + Sup(α3, α1) = 2.571, Ny(α2) = 
2.615, Ny(α3) = 2.582 and Ny(α4) = 2.475.χ˘1 = 0.201, χ˘2 = 0.102, χ˘3 = 0.304 and χ˘4 
= 0.393. The PFSSPOWG 
to aggregate the four PFNs and generate a comprehensive value. The steps are shown as 
follows: (β = −2) 
PFSSPOWG(α , α , . . . , α 

) = ⟨1−(Σ4 
β  1  
Σ4 

β  1  
Σ4 

β  1 

h=1,h̸=j 

n 
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jj=1 jj=1 jj=1 

jj=1 

jj=1 jj=1 

j=1 

s=1 φs = 1. Now, the procedure for selecting 

For a collection of PFN, we can easily prove the proposed PFSSPOWG operator 
satisfying the idempotency, monotonicity and boundedness properties as follows: 
property 4. (Idempotency) Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of 
PFN, if αj = α = (µ, η, ν) then 
PFSSPOWG(α1, α2, . . . , αn) = α 

 
property 5. 
(Monotonicity) Let α 

 
= ⟨µ  , η  
, ν 

⟩ and α′ = 

⟨µ′ 
 
′ ′ ′ 

, η  , ν 
j 

′ ′ ′ 
αj  
αj  
αj 

j
 
αj 

αj  αj ⟩ αj(j = 1, 2, . . . , n) as two 
sets of 

PFN; and µj ≤ µj, ηj ≤ ηj and νj ≤ νj then 
 

′ ′ ′ 
PFSSPOWG(α1, α2, . . . , αn) ≤ PFSSPOWG(α1, α2, . . . , αn) 

property 6. (Boundedness) Let αj = ⟨µαj , ηαj , ναj ⟩(j = 1, 2, . . . , n) be a set of 
PFN, and 
α+ = 
(maxµn 

, 
minη
n 

, 
minν
n 

), α− = 
(minµn 

, 
maxη
n 

, 
maxν
n 

) then 

α− ≤ PFSSPOWG(α1, α2, . . . , αn) ≤ α+ 
 
4 An approach to solving a multi criteria group decision-making 

problem with the proposed operators 
Let A = {Ai} i = 1, 2, · · · , m be a finite set of alternatives and B = {Bj } 
j = 1, 2, · · · , n be a finite set of criteria which are represented by PFNs. Let w 

= (w1, w2, · · · , wn)T be the weighting vector of the criteria 
B = {Bj } j = 1, 2, ..., n with w 

∈ [0, 1] and Σn 

wj = 1. Let φ = (φ1, φ2, · · · , φr )T be the 
weighting vector of 

Σn 
 

 
 
 

Decision matrix Cs = [αij ]m×n 

the best alternative using the proposed operators is explained step by step. 

the decision-makers C = {Cs} s = 1, 2, ..., r with φ ∈ [0, 1] and 
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ij 
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Figure 4: Flowchart for PFMCGDM 

 
 
 

Cs = 

 


 . 

 
 

. 
. . .

 . 

 

 

⟨αm1⟩  ⟨αm2⟩  · · · ⟨αmn⟩ 
 

Step 1: Usually, every decision matrix contained two types of data, like benefit 
B1 and cost B2 type criterias, if the data is cost type criteria, then normalize the SVN 
decision matrix using the following Equation 10 

 
 
 
 

Where 
αc 

 
 
 
is the complement 
αij. 

αij ; j 
∈ B1 
αc ; j ∈ 
B2 

(10) 

rij =
  

⟨α11⟩ ⟨α12⟩ · · · ⟨α1n⟩ 
⟨α21⟩ ⟨α22⟩ · · · ⟨α2n⟩ 
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Step 2: Aggregate all s decision matrixs Cs, s = 1, 2, · · · , r as provided by r 
experts into a collective decision matrix by employing proposed operators. 

 
Step 3:Determine the weight wj for each criteria Cj . In this step, the SMART is 

used to establish the criteria weights, relying on the subjective judgment of decision 
experts. The decision maker ranks the criteria according to their importance, from 
least to most significant. The criteria deemed least important is given 10 points, while 
the most important criteria is assigned 100 points. The remaining criteria receive 
points in ascending order based on their relative importance. Finally, the weight of 
each criteria is calculated by normalizing the total points so that they sum to one. 

 
Step 4:Aggregate PFNs by using proposed operators. 

 
Step 5: Calculate the score value for each {Ai}. If S (Ai) = S (Aj ) then calculate 
the accuracy value. 

 
Step 6:The best alternative is selected by ranking the alternatives based on their 

score and accuracy values of Ai. The proposed framework’s workflow is illustrated in 
Figure 4. 

 
5 Numerical example 
The proposed operators are examined through a numerical example from the decision-
making field, as outlined below: 
This section illustrates the selection of a road construction companies to show the 
applicability of MAGDM based on the proposed operators. Selecting the right road 
construction company is a crucial step for governments and enterprises to ensure 
infrastructure projects are completed efficiently and to high standards. Suppose a 
government agency is responsible for developing new roads in an urban area. These 
projects often require careful consideration of multiple factors, including Cost B1, 
Quality B2, Time B3, Flexibility B4, and Environmental Impact B5. To evaluate 
the five companies, A2, A2, A3, A4, and A5. By applying the developed algorithm for 
the best road construction companies, the group decision makers process ensures that all 
necessary steps are followed to choose the most companies. The weights assigned by 
the decision makers are specified as φ = (0.25, 0.45, 0.3). Gather the decision makers’ 
opinions under PF environment are listed in Table 2, 3 and 4 shows the decision 
matrices. 

Table 2: Decision matrix derived from the decision maker C1 
 

 B1 B2 B3 B4 B5 
A1 ⟨0.10, 0.20, 0.40⟩ ⟨0.60, 0.05, 0.10⟩ ⟨0.50, 0.10, 0.33⟩ ⟨0.54, 0.23, 0.14⟩ ⟨0.60, 0.20, 0.10⟩ 
A2 ⟨0.10, 0.20, 0.40⟩ ⟨0.50, 0.10, 0.10⟩ ⟨0.80, 0.04, 0.10⟩ ⟨0.55, 0.20, 0.15⟩ ⟨0.70, 0.10, 0.05⟩ 
A3 ⟨040, 0.10, 0.10⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.70, 0.10, 0.02⟩ ⟨0.50, 0.10, 0.30⟩ ⟨0.30, 0.40, 0.20⟩ 
A4 ⟨0.40, 0.20, 0.30⟩ ⟨0.50, 0.10, 0.15⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.50, 0.20, 0.05⟩ 
A5 ⟨0.10, 0.20, 0.40⟩ ⟨0.20, 0.04, 0.06⟩ ⟨0.60, 0.04, 0.05⟩ ⟨0.80, 0.03, 0.06⟩ ⟨0.25, 0.04, 0.50⟩ 
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Table 3: Decision matrix derived from the decision maker C2 
 

 B1 B2 B3 B4 B5 
A1 ⟨0.10, 0.20, 0.40⟩ ⟨0.20, 0.04, 0.06⟩ ⟨0.60, 0.04, 0.05⟩ ⟨0.80, 0.03, 0.06⟩ ⟨0.25, 0.04, 0.50⟩ 
A2 ⟨0.40, 0.20, 0.30⟩ ⟨0.50, 0.10, 0.15⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.50, 0.20, 0.05⟩ 
A3 ⟨040, 0.10, 0.10⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.70, 0.10, 0.02⟩ ⟨0.50, 0.10, 0.30⟩ ⟨0.30, 0.40, 0.20⟩ 
A4 ⟨0.10, 0.20, 0.40⟩ ⟨0.50, 0.10, 0.10⟩ ⟨0.80, 0.04, 0.10⟩ ⟨0.55, 0.20, 0.15⟩ ⟨0.70, 0.10, 0.05⟩ 
A5 ⟨0.10, 0.20, 0.40⟩ ⟨0.60, 0.05, 0.10⟩ ⟨0.50, 0.10, 0.33⟩ ⟨0.54, 0.23, 0.14⟩ ⟨0.60, 0.20, 0.10⟩ 

 
 
 

Table 4: Decision matrix derived from the decision maker C3 
 

 B1 B2 B3 B4 B5 
A1 ⟨0.40, 0.20, 0.30⟩ ⟨0.50, 0.10, 0.15⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.50, 0.20, 0.05⟩ 
A2 ⟨0.10, 0.20, 0.40⟩ ⟨0.20, 0.04, 0.06⟩ ⟨0.60, 0.04, 0.05⟩ ⟨0.80, 0.03, 0.06⟩ ⟨0.25, 0.04, 0.50⟩ 
A3 ⟨040, 0.10, 0.10⟩ ⟨0.10, 0.20, 0.40⟩ ⟨0.70, 0.10, 0.02⟩ ⟨0.50, 0.10, 0.30⟩ ⟨0.30, 0.40, 0.20⟩ 
A4 ⟨0.10, 0.20, 0.40⟩ ⟨0.50, 0.10, 0.10⟩ ⟨0.80, 0.04, 0.10⟩ ⟨0.55, 0.20, 0.15⟩ ⟨0.70, 0.10, 0.05⟩ 
A5 ⟨0.10, 0.20, 0.40⟩ ⟨0.60, 0.05, 0.10⟩ ⟨0.50, 0.10, 0.33⟩ ⟨0.54, 0.23, 0.14⟩ ⟨0.60, 0.20, 0.10⟩ 

 
 
 
5.1 Procedure steps for group decision-making 
Step 1: Given that the criteria are all benefit criteria, there is no need to normalise them. 

 
Step 2: To combine decision matrices Cs, s = 1, 2, 3 into a collective 

decision matrix, the PFSSPWG operator is applied, as shown in Table 5, with the 
decision maker’s weighting vector, φ = (0.25, 0.45, 0.43). 

 
Table 5: Comprehensive decision matrix C using PFSSPWG operator 

 
B1 B2 B3 B4 B5 

A1 ⟨0.117, 0.200, 0.375⟩ ⟨0.130, 0.200, 0.362⟩ ⟨0.400, .100, 0.100⟩  ⟨0.114, 0.200, 0.380⟩ ⟨0.100, 
0.200, 0.400⟩ 
A2 ⟨0.278, 0.062, 0.099⟩ ⟨0.315, 0.084, 0.114⟩ ⟨0.100, 0.200, 0.400⟩ ⟨0.500, 0.100, 0.113⟩ ⟨0.351, 
0.048, 0.091⟩ 
A3 ⟨0.178, 0.110, 0.272⟩ ⟨0.152, 0.118, 0.264⟩ ⟨0.700, 0.100, 0.020⟩ ⟨0.207, 0.084, 0.203⟩ ⟨0.519, 
0.087, 0.285⟩ 
A4 ⟨0.181, 0.146, 0.225⟩ ⟨0.149, 0.159, 0.278⟩ ⟨0.500, 0.100, 0.300⟩ ⟨0.196, 0.200, 0.235⟩ ⟨0.579, 
0.194, 0.123⟩ 
A5 ⟨0.337, 0.142, 0.351⟩ ⟨0.381, 0.137, 0.279⟩ ⟨0.300, 0.400, 0.200⟩ ⟨0.630, 0.128, 0.050⟩ ⟨0.415, 
0.171, 0.268⟩ 

 
Step 3:This step, we calculate the criteria weights using SMART. Experts assign 

scores ranging from 10 to 100 to each criteria. The normalized criteria weights are then 
determined by dividing the points assigned to each criteria by the total sum of points. 
Table 6 displays the points allocated by each expert and the corresponding normalized 
criteria weights. 
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Table 6: Criteria weights determined by the expert susing SMART technique. 

 
Criteria Points assigned by Sum Normalized 

C1 C2 C3 of points weights wj 
B1 80 80 80 240 0.255319 
B2 90 90 90 270 0.287234 
B3 70 70 70 210 0.223404 
B4 40 30 40 110 0.117021 
B4 40 40 30 110 0.117021 

  Total  940 1 
 
 

Step 4: Apply the PFSSPWG operator to aggregate all preference values in Table 7. 
 

Table 7: The overall preference value is calculated using the PFSSPWG operator 

 
PFEWG 

 
A1 ⟨0.131, 0.234, 0.234⟩ 
A2 ⟨0.184, 0.233, 0.233⟩ 
A3 ⟨0.204, 0.228, 0.228⟩ 
A4 ⟨0.199, 0.234, 0.235⟩ 
A5 ⟨0.360, 0.235, 0.235⟩ 

 
 

Step 5: Since S(A1) = −0.336, S(A2) = −0.282, S(A3) = −0.252 , S(A4) = 
−0.269 and S(A5) = −0.110. 
Step 6: The alternatives are ranked according to preference. The ranking of the 
alternatives is as follows: 

A5 > A3 > A4 > A2 > A1. 
 
6 Comparative analysis 
To illustrate the significance and applicability of the results, we compared the 
proposed MCGDM approach with existing AOs. 

 
6.1 Comparison with existing approaches 
Table 8 below compares the proposed operators with various existing AOs. 

Table 8: A comparison of the proposed operators with several existing approaches 
 

Operators Parameter Ranking Order 

PFWG 
(Wei(2017)) 

Not considered A3 > A5 > A4 > A2 
> A1 

PFOWG 
(Wei(2017)) 

Not considered A1 > A2 > A3 > A4 
> A5 

The Proposed AOs 
PFSSPWG Considered (β=-2) A5 > A3 > A4 > A2 > A1 
PFSSPOWG Considered (β=-2) A1 > A2 > A3 > A4 > A5 
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Table 8 compares the proposed operators with existing aggregation operators. The 

suggested operators yield different ranking outcomes compared to the existing ones. 
Therefore, the proposed operators can serve as a more effective alternative to the existing 
operators. 
Based on the comparative study above, the proposed approach for tackling decision-
making challenges offers several advantages over the existing operators. 

  As observed in Table 8, the results obtained from various existing approaches are 
derived in an environment that does not take into account the SS power of the 
criteria during evaluation.  In other words, these 
approaches assume that decision-makers consider the alternatives being 
assessed. However, in real-life situations, such conditions are only partially met. 

  Additionally, some existing operators for PFS are specific cases of the proposed 
operators. Consequently, it can be concluded that the proposed aggregation 
operators are more suitable for accurately addressing real-life problems 
compared to the existing ones. 

 
7 Conclusions 
This study presents the SMART for addressing MAGDM problems involving PF 
decision values. Aggregating decision values is a critical initial step in 
PFMCGDM. We introduce a series of PFSSPG operators, starting with the 
PFSSPG operator and its desirable properties. We also develop weighted variants, 
including PFSSPWG and PFSSPOWG operators and examine their fundamental 
properties. The SMART is employed to determine criteria weights based on decision 
experts’ subjective knowledge. A real-life supplier selection application in the 
chemical industry demonstrates the practical applicability of the proposed work. A 
comparative study with existing oper- ators highlights the feasibility and flexibility of 
our solution methodology. Future research will focus on applying the developed AO 
to average, linguistic and complex uncertain environments, exploring various PF 
AOs, and applying them to practical decision scenarios to enhance our understanding 
and effectiveness in handling diverse fuzzy DM situations. 
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