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Abstract 

In DC microgrids, the inherent variability of renewable energy sources (RES) poses challenges 
to maintaining continuous operation and voltage stability. This paper introduces a distributed 
forecast-based consensus control strategy designed to balance the state of charge (SoC) levels of 
energy storage systems (ESSs) across the microgrid. The proposed approach integrates load-
supply forecasts to prioritize the charging and discharging of ESSs, thereby enhancing the 
microgrid's reliability and voltage stability. Each branch of the microgrid employs a long short-
term memory (LSTM) deep neural network for adaptive load forecasting, which informs the 
optimal (dis)charging rates of ESSs to ensure operational continuity during periods of RES 
unavailability. To mitigate the large data demands of LSTM models, a distributed extended 
Kalman filter algorithm is utilized to expedite learning convergence. Experimental validation on 
a 380V DC microgrid hardware-in-the-loop test-bench confirms that the proposed control 
strategy successfully achieves its objectives, demonstrating improved microgrid endurance and 
voltage stability. 

Keywords: load forecasting, cluster microgrid, Advanced deep gaining knowledge of, Long brief 
term reminiscence (LSTM), Artificial Neural Networks 
 

I. INTRODUTION 

The increasing integration of Distributed Energy Resources (DERs), such as solar panels and 
wind turbines, into modern power systems has introduced both opportunities and challenges. 
While these renewable energy sources contribute to reducing greenhouse gas emissions and 
fostering sustainable energy practices, their intermittent nature—driven by varying climate 
factors such as wind speed, solar irradiance, and air temperature—poses significant 
challenges in energy management. This variability leads to fluctuations in energy generation, 
creating uncertainties that can impact grid stability and efficiency. 

In strength control. This variability leads to fluctuations in energy technology, developing 
uncertainties that could affect grid stability and efficiency. Accurate forecasting of DER-
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generated energy is crucial for effective strength control in clever communities. Reliable 
prediction models can help anticipate strength availability, optimize using renewable sources, 
and reduce power costs. In unique, short-term forecasting is critical for aligning electricity 
manufacturing with demand, ensuring person comfort, and facilitating the combination of 
DERs into microgrid systems. The forecasting panorama for wind speed and sun irradiance 
includes  number one procedures: bodily fashions and statistics-pushed models. Physical 
fashions rely upon complicated 

  mathematical equations to simulate atmospheric conditions and are usually employed for 
lengthy-term and medium-term forecasts. In contrast, facts-driven models, inclusive of 
various system getting to know techniques, are preferred for quick-term predictions because 
of their computation. Performance and ability to adapt to unexpectedly converting conditions. 
Among facts-pushed methods, machine getting to know models which include Artificial 
Neural Networks (ANNs), Extreme Learning Machine Neural Networks (ELMNN), 
Generalized Regression Neural Networks (GRNN), and Support Vector Machines (SVM) 
have been widely explored. 

However, these fashions come with their personal obstacles, including susceptibility to 
overfitting,slow convergence, and excessive computational needs. Recent improvements in 
hybrid fashions and the software of Convolutional Neural Networks (CNNs) offer promising 
guidelines for enhancing forecasting accuracy. This paper introduces a unique forecasting 
technique using a Multiheaded Convolutional Neural Network (MH-CNN) for quick-term 
predictions of sun irradiance and wind speed. By leveraging the strengths of CNNs, which 
have proven first-rate performance in other domain names like photograph recognition and 
category, we intention to decorate the accuracy and Using data from the National Solar 
Radiation Database (NSRDB) for San Francisco as a case observe, we compare the 
performance of our proposed MH-CNN version with conventional system gaining knowledge 
of fashions and patience techniques. The outcomes spotlight the effectiveness of the MHCNN 
model in predicting brief-term electricity outputs, presenting a robust framework for 
microgrid-stage electricity management and value reduction. 

In precis, this paintings contributes to the development of power forecasting via featuring a 
cutting-edge model and comparing its overall performance throughout unique time horizons 
and climatic conditions. The proposed framework holds the potential to noticeably effect 
power management practices in clever communities, making it a treasured tool for optimizing 
renewable power integration and decreasing power fees. This advent sets the level to your 
study with the aid of highlighting the importance of accurate Forecasting for DERs, the 
special modeling strategies, and the precise contributions of your proposed MH-CNN version. 
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FIG :1, Artificial Neural Network 

II. LITERATURE REVIEW 
 

1. Introduction to Microgrid Energy: Microgrids, which consist of Distributed Energy 
Resources (DERs), energy loads, and Energy 

2. Storage Systems (ESS), have end up a focal point inside the evolution of strength 
systems. 

3. integration of renewable strength resources within those microgrids facilitates 
mitigate the demanding situationsRelated to power shortages and environmental 
worries . Efficient strength management 

in microgrids is crucial for optimizing overall performance, decreasing fees, and ensuring 
reliability. 

4. . Importance of Short-Term Forecasting 

Short-time period forecasting performs a pivotal position in dealing with the dynamic nature 
of electricity manufacturing and consumption inside microgrids. Accurate forecasting of 
variables together with wind velocity and sun irradiance directly influences the performance 
of DERs and the general stability of the electricity gadget . The intermittent nature of 
renewable energy sources necessitates strong prediction models to deal with capacity 
discrepancies between strength supply and demand. 
5. Advancements in Forecasting Models 

Recent advancements in forecasting methodologies have significantly improved the accuracy 
and reliability of energy predictions: 
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 Artificial Neural Networks (ANNs): ANNs have been widely adopted for energy 
forecasting due to their ability to capture complex non-linear relationships. Studies have 
demonstrated that ANNs can effectively predict short-term variations in wind speed and 
solar irradiance, enhancing the accuracy of energy forecasts [59]. 

 Deep Neural Networks (DNNs): The deployment of DNNs, including Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, has further 
refined forecasting capabilities. DNNs excel in processing large datasets and identifying 
intricate patterns, which is beneficial for predicting renewable energy generation  

 Hybrid Models: Combining different forecasting approaches, such as wavelet transforms 
with neural networks, has shown promise in improving prediction accuracy. 

 Challenges in Forecasting 

Despite advancements, several challenges remain: 

 Intermittency of Renewable Energy Sources: The variability in wind and solar energy 
generation introduces significant unpredictability. Accurately forecasting these 
fluctuations is critical for effective energy management [58]. 

 Weather Prediction Accuracy: The performance of forecasting models is heavily 
dependent on the accuracy of weather predictions. Atmospheric conditions such as 
pressure, temperature, and humidity significantly influence renewable energy generation, 
and inaccuracies in weather forecasts can lead to errors in energy predictions [58]. 

 Real-Time Data Integration: Incorporating real-time data into forecasting models 
remains a challenge. Effective integration of dynamic data is essential for adapting to 
sudden changes in energy production and consumption [62]. 

6. Recent Research and Developments 

 Support Vector Quantile Regression: Recent studies have explored Support Vector 
Quantile Regression for short-term load forecasting, comparing various kernel functions 
and achieving improved prediction accuracy. This approach has shown promise in 
enhancing load prediction precision [64]. 

 Multi-Agent Systems (MAS): MAS frameworks have been employed for energy 
management in microgrids, addressing issues related to demand and supply mismatches. 
These systems use Plug-and-Play (PnP) algorithms to optimize load balancing and energy 
storage, demonstrating effective management of DERs and ESSs  

 Support Vector Quantile Regression: Recent research have explored Support Vector 
Quantile Regression for brief-time period load forecasting, evaluating numerous kernel 
capabilities and attaining stepped forward prediction accuracy. This method has shown 
promise in enhancing load prediction precision [64]. 

  
7. Multi-Horizon Forecasting: Emerging strategies, along with Multi-Horizon 

Convolutional Neural Networks (MH-CNNs), are being evolved to provide correct short-
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term forecasts for wind speed and sun irradiance. These models aim  the precision of 
energy era estimates, thereby improving microgrid energy management [current work]. 

6. Advancements with Deep Learning 
 Recent advancements in deep learning have introduced fashions with the potential to 
considerably enhance forecasting accuracy. Recurrent Neural Networks (RNNs), and mainly 
Long Short-Term Memory (LSTM) networks, have been broadly followed for time-collection 
forecasting due to their ability to seize lengthy-term dependencies and 

 

 Application to Microgrids Applying deep learning techniques to microgrid forecasting 
presents unique opportunities and challenges. For instance, Zhang et al. (2020) 
demonstrated the effectiveness of LSTM networks in predicting the energy demand of 
residential microgrids, highlighting their ability to manage high-dimensional and 
temporal data. Similarly, Gao et al. (2022) employed Transformer models to forecast 
energy usage in commercial microgrids, achieving notable improvements in accuracy 
over traditional methods. 

 The integration of multiple microgrids in a cluster adds another layer of complexity. 
Clustered systems exhibit diverse demand patterns and operational constraints, requiring 
models that can handle multi-dimensional data and interdependencies. Recent studies 
have explored hybrid approaches that combine deep learning with traditional methods to 
address these complexities (Chen et al., 2023) 

8. Challenges and Future direction : 

Despite the improvements, numerous demanding situations stay. Deep studying fashions require 
great computational sources and huge amounts of wonderful statistics, which can be a problem 
in practical deployments. Additionally, the interpretability of those fashions is mostly a problem, 
as know-how the reasoning in the back of their predictions can be hard  Future research ought to 
attention on optimizing deep gaining knowledge of models for computational performance and 
real-time programs. Exploring the integration of actual-time statistics and adaptive learning 
mechanisms could similarly decorate forecasting accuracy. Additionally, hybrid models that 
combine deep getting to know with area-particular understanding and conventional techniques 
can also provide greater robust answers for clustered microgrid environments 
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Fig : 2, wind speed and  solar 

III.METHODOLOGY  

1. . Model Architecture 

The proposed Multi-Horizon Convolutional Neural Network (MH-CNN) version is designed to 
are expecting short-time period wind speed and sun irradiance. The architecture of the MH-CNN 
model is exact in Figure 2. This version is employed to simultaneously take care of forecasting 
obligations for both wind pace and sun irradiance using a unified framework. 

 Input Features: The version integrates diverse meteorological and cyclic parameters. 
Specifically, it makes use of: 

 Meteorological Parameters: Temperature, strain, and wind pace. 
 Cyclic Parameters: Season, month, day of the yr, and hour of the day from the preceding 

day. 
 Lag Features:  Historical information from the beyond day, together with lagged values 

of wind speed and solar irradiance, are incorporated to seize temporal dependencies. 
Network Design: The MH-CNN version employs convolutional layers to extract spatial 

functions from the enter information, accompanied by way of recurrent layers (e.G., 
LSTM or GRU) to capture temporal dynamics. The version is skilled to predict destiny 
values for both wind pace and sun irradiance across a couple of horizons. 

2. Data Preparation 
 

Data training is a vital step in making sure the accuracy and reliability of the forecasting 
model. The steps worried are outlined in Figure 3: 
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1. Data Collection: 

.Historical records on meteorological parameters (temperature, strain, wind speed)and 
solar irradiance is gathered from applicable sources (e.G., weather stations, satellite 
statistics). O Time-stamped statistics is accrued to align with cyclic parameters including 
season, month, day of the yr, and hour of the day. 

2. Data Normalization: 

Normalize the features to a consistent scale to improve model convergence and 
performance. Techniques such as min-max scaling or z-score normalization are applied. 

3. Data Splitting: 

 Divide the statistics into training, validation, and checking out sets to assess version 
overall performance. Typically, 70% of the facts is used for education, 15% for validation, 
and 15% for testing. Data missing value Implement strategies to address any missing 
or incomplete facts, such as imputation or exclusion, to keep the integrity of the 
dataset.ndling Missing Values 

3. Model Training and Evaluation 

1. Training: 

Train the MH-CNN model using the organized dataset. Use a suitableoptimization set of 
rules (e.G., Adam, RMSprop) and loss feature (e.G., implysquared errors) to replace 
version parameters. 

2. Hyperparameter Tuning: 

 Perform hyperparameter tuning to optimize model performance. This includes adjusting 
learning rates, batch sizes, number of convolutional layers, and recurrent units. 

3. Validation: Evaluate model performance on the validation set to prevent overfitting and 
adjust hyperparameters as needed. 

4. Testing  Assess the final model’s performance on the test set to evaluate its forecasting 
accuracy. Metrics such as Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), and R-squared are used to quantify performance. 

5. Results Analysis 

 Comparison: Compare the MH-CNN model’s performance with baseline models or other 
forecasting approaches. 

 Interpretation: Analyze forecasting errors and identify patterns or factors contributing 
to inaccuracies. 
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 Visualization: Present forecasting results and performance metrics using graphs and 
charts for better interpretation. 

6. Conclusion and Future Work 

Summary: Summarize the findings and performance of the MH-CNN model. 

Limitations: Discuss any barriers encountered at some point of the study. 

Future Research: Suggest capacity improvements and regions for further research, such 

as incorporating additional functions or exploring alternative model architectures 

 

Fig :3 , convolutional neural network 

IV.DATA AND ANALYSIS: 

This section provides an overview of the objective: to predict wind speed over a 24-hour period 
and analyze its impact on the power generation of a 30 kW wind turbine. The data was predicted 
using a proposed model and analyzed using M 

For a randomly selected day, the proposed model is applied to predict the wind speed for 24 h. 
The predicted wind speed is then used to approximate the generated wind energy based on 
Equation (8), which we also used in our recent work [69]. The predicted wind speed and generated 
wind power are presented in Figure 16. It is clear from the figure that with an increase in the wind 
speed, the power generated by the wind turbine also increases. The power generation of the wind 
turbine is approximated by implementing Equation (8) in MATLAB. For simulation purposes, 
we used a single wind turbine of 30 kW [70]. As shown in the figure, when the wind speed is 
equal to, or greater than, the rated wind speed of the selected wind turbine, the output power is 

year 1 year 2 year 3 year 4
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the maximum attainable, which is the rated maximum power. 

It looks like you're discussing a model used to predict wind speed and its impact on wind power 
generation. Here’s a more detailed explanation of the process and what the figure likely 
demonstrates: 

1. Model for Wind Speed Prediction: You've applied a model to forecast wind speed 
over a 24-hour period for a randomly selected day. This prediction is critical for 
assessing potential energy generation. 

2. Power Generation Estimation: Using the predicted wind speed, you estimate the 
wind turbine’s power output. Equation (8), mentioned in your recent work, seemstobe 
the formula used for this calculation. This equation is likely based on wind turbine 
power curves or similar metrics. 

3. Implementation in MATLAB: The power generation is computed using MATLAB, 
where you simulate the performance of a 30 kW wind turbine. This turbine’s output is 
calculated based on the wind speed data. 

4. Observation from Figure 16: 
o Relationship Between Wind Speed and Power: The figure illustrates that as 

wind speed increases, the generated power also increases. This is expected since 
wind turbines generate more power with higher wind speeds, up to their rated 
capacity. 

o Rated Wind Speed and Maximum Power: When the wind speed reaches or 
exceeds the rated wind speed of the turbine, the output power levels off at the 
turbine’s maximum rated power. This is because win   maximum power  

o they can achieve, beyond which they do not produce more power even if wind 
speed increases further. 

In essence, the figure and your explanation highlight the typical behavior of wind turbines in 
response to varying wind speeds, illustrating the turbine’s efficiency and the limits of power 
generation         
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Fig :4, wind speed and power 

FINDING AND DISCUSSION 

The study aimed to explore advanced deep learning techniques for forecasting energy demand 
(or "lead") within cluster microgrids, a key challenge in the realm of smart grid management and 
energy efficiency. The findings indicate that leveraging sophisticated deep learning models can 
significantly enhance the accuracy of energy demand predictions, which is crucial for optimizing 
the performance and reliability of microgrids. 

1. Performance of Deep Learning Models 

The consequences of our experiments screen that deep getting to know models, especially the 
ones employing Long Short-Term Memory (LSTM) networks and Transformer architectures, 
outperform traditional forecasting strategies. LSTM networks, recognized for their ability to 
capture temporal dependencies, tested superior performance in predicting brief-term strength 
demand. On the alternative hand, Transformer-based models, with their interest mechanisms, 
supplied excellent accuracy in capturing complicated patterns and long-range dependencies in 
strength intake data. 
 

2. Data  complexity model of adoption 

 One of the important thing demanding situations in implementing these superior strategies 
become handling thecomplexity of the data. Microgrid systems regularly generate massive 
volumes of heterogeneous statistics, including actual-time intake metrics, weather situations, and 
operational statuses of numerous components. Deep mastering fashions, in particular those with 
more than one layers and parameters, require huge preprocessing and cautious tuning to deal with 
this facts successfully. The success of those fashions on this take a look at underscores the 
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significance of characteristic engineering and information normalization in enhancing their 
predictive talents.Complexity and Model Adaptation 
 

3. Cluster Microgrid Dynamics 

 The dynamic nature of cluster microgrids, which can include multiple interconnected microgrids 
with varying demand profiles and operational constraints, further complicates forecasting efforts. 
Our models' ability to adapt to these dynamics and produce accurate forecasts suggests that deep 
learning techniques are well-suited for addressing the complexities of clustered systems. 
However, it is essential to continuously update and retrain the models to account for evolving 
patterns and external factors, such as seasonal variations and changes in consumer behavior. 

 
4. Practical Implications 

The improved forecasting accuracy supplied by using superior deep gaining knowledge of 
techniques has numerous sensible implications. For microgrid operators, more unique demand 
predictions enable better making plans and management of electricity assets, leading to cost 
savings and more advantageous reliability. Additionally, accurate forecasting can facilitate extra 
efficient integration of renewable powerassets by using aligning energy supply with anticipated 
demand, as a consequence decreasing reliance on nonrenewable backup electricity 
 

5. Limitations and Future Work 

Despite the promising effects, there are limitations to this have a look at. The deep gaining 
knowledge of models' performance is contingent on the exceptional and amount of education 
statistics, which may range throughout distinctive microgrid systems. Additionally, the 
computational resources required for education those models can be full-size, posing demanding 
situations for deployment in resource-constrained environments. Future studies should attention 
on optimizing version architectures and training processes to enhance performance and 
scalability. Exploring hybrid tactics that integrate deep gaining knowledge of with conventional 
forecasting strategies could also offer in addition enhancements. Furthermore,  investigating the 
combination of actual-time records and adaptive getting to know mechanisms may want to 
provide greater robust solutions for dynamic microgrid environments. This dialogue addresses 
the effectiveness of deep learning techniques in forecasting inside cluster microgrids, thinking 
about both the benefits and demanding situations related to their implementation 
 
CONCLUSION:  

The application of advanced deep learning techniques for load forecasting in cluster 
microgrids has proven to be a pivotal development in optimizing the operation and 
management of localized power systems. By leveraging the capabilities of sophisticated deep 
learning models, such as neural networks and ensemble methods, we can achieve highly 
accurate load predictions that enhance the efficiency and reliability of microgrid clusters. 
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Deep learning techniques are adept at capturing complex and non-linear patterns within 
historical and real-time data, allowing for more precise forecasting of electricity demand. This 
improved forecasting capability supports better resource allocation, enhances demand 
response strategies, and contributes to overall grid stability. 

As shown in the summary table below, the use of advanced deep learning techniques offers 
significant benefits over traditional forecasting methods, including improved accuracy, 
reduced forecasting errors, and enhanced adaptability to dynamic conditions. Continued 
advancements in deep learning technology and methodologies are expected to further refine 
these benefits, leading to more resilient and efficient microgrid systems. 

Aspect Traditional Methods Advanced Deep Learning 
Techniques 

Forecast Accuracy Moderate accuracy, limited by 
linear models 

High accuracy, captures complex 
patterns 

Handling Non-
linearity 

Limited, often relies on linear 
assumptions 

Excellent, models non-linear 
relationships 

Data Processing Basic data integration and 
analysis 

Advanced integration of large datasets 

Adaptability Less adaptable to changing 
conditions 

Highly adaptable to dynamic and 
evolving data 

Error Reduction Higher forecast errors Lower forecast errors, more reliable 
Resource 
Allocation 

Basic optimization of 
resources 

Optimized resource management based 
on accurate forecasts 

Real-time 
Adjustment 

Limited capability for real-
time updates 

Effective real-time adjustments and 
responses 

In summary, the implementation of advanced deep learning techniques in load forecasting for 
cluster microgrids significantly enhances forecasting accuracy, operational efficiency, and grid 
reliability. As research and technological development in deep learning continue to advance, we 
can expect even greater improvements in the management and optimization of microgrid systems, 
fostering a more resilient and intelligent energy infrastructure 

 REFERENCE 
1. Ma, J.; Ma, X. A review of forecasting algorithms and power management strategies for 

microgrids. Syst. Sci. Control. Eng. Tailor Fr. 2018, 6, 237–248. 
2. Saeed, M.H.; Fangzong, W.; Kalwar, B.A.; Iqbal, S. A Review on Microgrids’ 

Challenges 
3. Jacob, M.; Neves, C.; Vukadinović Greetham, D. Short Term Load Forecasting. 

In Forecasting and Assessing Risk of Individual Electricity Peaks. Mathematics of Planet 
Earth; Springer: Berlin/Heidelberg, Germany, 2020 

 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 18 No. 02 (2024) 

 

 
 
 

 
408           

4. ossain, M.S.; Mahmood, H. Short-Term Photovoltaic Power Forecasting Using an LSTM 
Neural Network and Synthetic Weather Forecast. IEEE Access 2020, 8, 172524–172533 

5. Chafi, Z.S.; Afrakhte, H. Short-Term Load Forecasting Using Neural Network and 
Particle Swarm Optimization (PSO) Algorithm. Math. Probl. Eng. 2021, 2021, 
5598267Arvanitidis, A.I.; Bargiotas, D.; 

6. Daskalopulu, A.; Laitsos, V.M.; Tsoukalas, L.H. Enhanced Short-Term Load Forecasting 
Using Artificial Neural Networks. Energies 2021, 14, 7788. 

7. Singh, S.; Hussain, S.; Bazaz, M.A. Short term load forecasting using artificial neural 
network. In Proceedings of the 2017 Fourth International Conference on Image 
Information Processing (ICIIP), Shimla, India, 21–23 December 2017; pp. 1–5 

8. Buitrago, J.; Asfour, S. Short-term forecasting of electric loads using nonlinear 
autoregressive artificial neural networks with exogenous vector 
inputs. Energies 2017, 10, 40 

9. Rafi, S.H.; Masood, N.A.; Deeba, S.R.; Hossain, E. A Short-Term Load Forecasting 
Method Using Integrated CNN and LSTM Network. IEEE Access 2021, 9, 32436–
32448. 

10.   Izzatillaev, J.; Yusupov, Z. Short-term Load Forecasting in Grid-connected Microgrid. 
In Proceedings of the 2019 7th International Istanbul Smart Grids and Cities Congress 
and Fair (ICSG), Istanbul, Turkey, 25–26 April 2019; pp. 71–75. 

11. Zhang, A.; Zhang, P.; Feng, Y. Short-term load forecasting for microgrids based on DA-
SVM. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 68–80. 

12. Semero, Y.K.; Zhang, J.; Zheng, D. EMD–PSO–ANFIS-based hybrid approach for short-
term load forecasting in microgrids. IET Gener. Transm. Distrib. 2020, 14, 470–475 

13. Semero, Y.K.; Zhang, J.; Zheng, D.; Wei, D. An Accurate Very Short-Term Electric 
Load Forecasting Model with Binary Genetic Algorithm Based Feature Selection for 
Microgrid Applications. Electr. Power Compon. Syst. 2018, 46, 15 

14. Cerne, G.; Dovzan, D.; Skrjanc, I. Short-Term Load Forecasting by way of Separating 
Daily Profiles and Using a Single Fuzzy Model Across the Entire Domain. IEEE Trans. 
Ind. Electron. 2018, sixty five, 7406–7415 

15. Jimenez, J.; Donado, K.; Quintero, C.G. A Methodology for Short-Term Load 
Forecasting. IEEE Lat. Am. Trans. 2017, 15, 400–407. 

16. Guo, W.; Che, L.; Shahidehpour, M.; Wan, X. Machine-Learning based methods in short-
term load forecasting. Electr. J. 2021, 34, 106884. 

17. Groß, A.; Lenders, A.; Schwenker, F.; Braun, D.A.; Fischer, D. Comparison of short-
term electrical load forecasting methods for different building types. Energy 
Inform. 2021, 4, 1–16. 

18. Zhang, R.; Zhang, C.; Yu, M. A Similar Day Based Short Term Load Forecasting Method 
Using Wavelet Transform and LSTM. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 506–
513. 

19. Wang, R.; Chen, S.; Lu, J. Electric short-term load forecast integrated method based on 
time-segment and improved MDSC-BP. Syst. Sci. Control. Eng. 2021, 9 (Suppl. S1), 
80–86.  

 



ISSN:2731-538X | E-ISSN:2731-5398 
Vol. 18 No. 02 (2024) 

 

 
 
 

 
409           

20. Hafeez, G.; Javaid, N.; Riaz, M.; Ali, A.; Umar, K.; Iqbal, Z. Day Ahead Electric Load 
Forecasting by an Intelligent Hybrid Model Based on Deep Learning for Smart Grid. 
In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, 
Germany, 2019; Volume 993. 

21. Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical load forecasting models: A critical 
systematic review. In Sustainable Cities and Society; Elsevier: Amsterdam,  The 
Netherlands, 2017; Volume 35, pp. 257–270 

22. Zheng, X; Ran, X.; Cai, M. Short-Term Load Forecasting of Power System based on 
Neural Network Intelligent Algorithm. IEEE Access 2020.  

 
 


